Перейти к основному содержанию
Найдите x
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

x^{2}-2x+1-2x^{2}=-2
Вычтите 2x^{2} из обеих частей уравнения.
-x^{2}-2x+1=-2
Объедините x^{2} и -2x^{2}, чтобы получить -x^{2}.
-x^{2}-2x+1+2=0
Прибавьте 2 к обеим частям.
-x^{2}-2x+3=0
Чтобы вычислить 3, сложите 1 и 2.
a+b=-2 ab=-3=-3
Чтобы решить уравнение, разложите левую сторону на множители путем группировки. Сначала левую сторону необходимо перезаписать в следующем виде: -x^{2}+ax+bx+3. Чтобы найти a и b, настройте систему на ее устранение.
a=1 b=-3
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b отрицательный, отрицательное число имеет большее абсолютное значение, чем положительное. Единственная такая пара является решением системы.
\left(-x^{2}+x\right)+\left(-3x+3\right)
Перепишите -x^{2}-2x+3 как \left(-x^{2}+x\right)+\left(-3x+3\right).
x\left(-x+1\right)+3\left(-x+1\right)
Разложите x в первом и 3 в второй группе.
\left(-x+1\right)\left(x+3\right)
Вынесите за скобки общий член -x+1, используя свойство дистрибутивности.
x=1 x=-3
Чтобы найти решения для уравнений, решите -x+1=0 и x+3=0у.
x^{2}-2x+1-2x^{2}=-2
Вычтите 2x^{2} из обеих частей уравнения.
-x^{2}-2x+1=-2
Объедините x^{2} и -2x^{2}, чтобы получить -x^{2}.
-x^{2}-2x+1+2=0
Прибавьте 2 к обеим частям.
-x^{2}-2x+3=0
Чтобы вычислить 3, сложите 1 и 2.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте -1 вместо a, -2 вместо b и 3 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Возведите -2 в квадрат.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 3}}{2\left(-1\right)}
Умножьте -4 на -1.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-1\right)}
Умножьте 4 на 3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-1\right)}
Прибавьте 4 к 12.
x=\frac{-\left(-2\right)±4}{2\left(-1\right)}
Извлеките квадратный корень из 16.
x=\frac{2±4}{2\left(-1\right)}
Число, противоположное -2, равно 2.
x=\frac{2±4}{-2}
Умножьте 2 на -1.
x=\frac{6}{-2}
Решите уравнение x=\frac{2±4}{-2} при условии, что ± — плюс. Прибавьте 2 к 4.
x=-3
Разделите 6 на -2.
x=-\frac{2}{-2}
Решите уравнение x=\frac{2±4}{-2} при условии, что ± — минус. Вычтите 4 из 2.
x=1
Разделите -2 на -2.
x=-3 x=1
Уравнение решено.
x^{2}-2x+1-2x^{2}=-2
Вычтите 2x^{2} из обеих частей уравнения.
-x^{2}-2x+1=-2
Объедините x^{2} и -2x^{2}, чтобы получить -x^{2}.
-x^{2}-2x=-2-1
Вычтите 1 из обеих частей уравнения.
-x^{2}-2x=-3
Вычтите 1 из -2, чтобы получить -3.
\frac{-x^{2}-2x}{-1}=-\frac{3}{-1}
Разделите обе части на -1.
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{3}{-1}
Деление на -1 аннулирует операцию умножения на -1.
x^{2}+2x=-\frac{3}{-1}
Разделите -2 на -1.
x^{2}+2x=3
Разделите -3 на -1.
x^{2}+2x+1^{2}=3+1^{2}
Деление 2, коэффициент x термина, 2 для получения 1. Затем добавьте квадрат 1 к обеим частям уравнения. Этот шаг поворачивается в левой части уравнения до идеального квадрата.
x^{2}+2x+1=3+1
Возведите 1 в квадрат.
x^{2}+2x+1=4
Прибавьте 3 к 1.
\left(x+1\right)^{2}=4
Коэффициент x^{2}+2x+1. Как правило, если x^{2}+bx+c является идеальным квадратом, его всегда можно разложить как \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Извлеките квадратный корень из обеих частей уравнения.
x+1=2 x+1=-2
Упростите.
x=1 x=-3
Вычтите 1 из обеих частей уравнения.