Найдите x
x=3
x=7
График
Поделиться
Скопировано в буфер обмена
a+b=-10 ab=21
Чтобы решить уравнение, фактор x^{2}-10x+21 с помощью формулы x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Чтобы найти a и b, настройте систему на ее устранение.
-1,-21 -3,-7
Так как ab является положительным, a и b имеют один и тот же знак. Так как a+b является отрицательным, a и b являются отрицательными. Перечислите все такие пары целых 21.
-1-21=-22 -3-7=-10
Вычислите сумму для каждой пары.
a=-7 b=-3
Решение — это пара значений, сумма которых равна -10.
\left(x-7\right)\left(x-3\right)
Перезапишите разложенное на множители выражение \left(x+a\right)\left(x+b\right) с использованием полученных значений.
x=7 x=3
Чтобы найти решения для уравнений, решите x-7=0 и x-3=0у.
a+b=-10 ab=1\times 21=21
Чтобы решить уравнение, разложите левую сторону на множители путем группировки. Сначала левую сторону необходимо перезаписать в следующем виде: x^{2}+ax+bx+21. Чтобы найти a и b, настройте систему на ее устранение.
-1,-21 -3,-7
Так как ab является положительным, a и b имеют один и тот же знак. Так как a+b является отрицательным, a и b являются отрицательными. Перечислите все такие пары целых 21.
-1-21=-22 -3-7=-10
Вычислите сумму для каждой пары.
a=-7 b=-3
Решение — это пара значений, сумма которых равна -10.
\left(x^{2}-7x\right)+\left(-3x+21\right)
Перепишите x^{2}-10x+21 как \left(x^{2}-7x\right)+\left(-3x+21\right).
x\left(x-7\right)-3\left(x-7\right)
Разложите x в первом и -3 в второй группе.
\left(x-7\right)\left(x-3\right)
Вынесите за скобки общий член x-7, используя свойство дистрибутивности.
x=7 x=3
Чтобы найти решения для уравнений, решите x-7=0 и x-3=0у.
x^{2}-10x+21=0
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 21}}{2}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 1 вместо a, -10 вместо b и 21 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 21}}{2}
Возведите -10 в квадрат.
x=\frac{-\left(-10\right)±\sqrt{100-84}}{2}
Умножьте -4 на 21.
x=\frac{-\left(-10\right)±\sqrt{16}}{2}
Прибавьте 100 к -84.
x=\frac{-\left(-10\right)±4}{2}
Извлеките квадратный корень из 16.
x=\frac{10±4}{2}
Число, противоположное -10, равно 10.
x=\frac{14}{2}
Решите уравнение x=\frac{10±4}{2} при условии, что ± — плюс. Прибавьте 10 к 4.
x=7
Разделите 14 на 2.
x=\frac{6}{2}
Решите уравнение x=\frac{10±4}{2} при условии, что ± — минус. Вычтите 4 из 10.
x=3
Разделите 6 на 2.
x=7 x=3
Уравнение решено.
x^{2}-10x+21=0
Такие квадратные уравнения, как это, можно решить, дополнив их до полного квадрата. Чтобы можно было дополнить уравнение до полного квадрата, оно должно иметь вид x^{2}+bx=c.
x^{2}-10x+21-21=-21
Вычтите 21 из обеих частей уравнения.
x^{2}-10x=-21
Если из 21 вычесть такое же значение, то получится 0.
x^{2}-10x+\left(-5\right)^{2}=-21+\left(-5\right)^{2}
Деление -10, коэффициент x термина, 2 для получения -5. Затем добавьте квадрат -5 к обеим частям уравнения. Этот шаг поворачивается в левой части уравнения до идеального квадрата.
x^{2}-10x+25=-21+25
Возведите -5 в квадрат.
x^{2}-10x+25=4
Прибавьте -21 к 25.
\left(x-5\right)^{2}=4
Коэффициент x^{2}-10x+25. Как правило, если x^{2}+bx+c является идеальным квадратом, его всегда можно разложить как \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{4}
Извлеките квадратный корень из обеих частей уравнения.
x-5=2 x-5=-2
Упростите.
x=7 x=3
Прибавьте 5 к обеим частям уравнения.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}