Перейти к основному содержанию
Найдите x
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

x^{2}+2x+1=16
Использование бинома Ньютона \left(a+b\right)^{2}=a^{2}+2ab+b^{2} для разложения \left(x+1\right)^{2}.
x^{2}+2x+1-16=0
Вычтите 16 из обеих частей уравнения.
x^{2}+2x-15=0
Вычтите 16 из 1, чтобы получить -15.
a+b=2 ab=-15
Чтобы решить уравнение, фактор x^{2}+2x-15 с помощью формулы x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Чтобы найти a и b, настройте систему на ее устранение.
-1,15 -3,5
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b положительный, положительное число имеет больше абсолютное значение, чем отрицательное. Перечислите все такие пары целых -15.
-1+15=14 -3+5=2
Вычислите сумму для каждой пары.
a=-3 b=5
Решение — это пара значений, сумма которых равна 2.
\left(x-3\right)\left(x+5\right)
Перезапишите разложенное на множители выражение \left(x+a\right)\left(x+b\right) с использованием полученных значений.
x=3 x=-5
Чтобы найти решения для уравнений, решите x-3=0 и x+5=0у.
x^{2}+2x+1=16
Использование бинома Ньютона \left(a+b\right)^{2}=a^{2}+2ab+b^{2} для разложения \left(x+1\right)^{2}.
x^{2}+2x+1-16=0
Вычтите 16 из обеих частей уравнения.
x^{2}+2x-15=0
Вычтите 16 из 1, чтобы получить -15.
a+b=2 ab=1\left(-15\right)=-15
Чтобы решить уравнение, разложите левую сторону на множители путем группировки. Сначала левую сторону необходимо перезаписать в следующем виде: x^{2}+ax+bx-15. Чтобы найти a и b, настройте систему на ее устранение.
-1,15 -3,5
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b положительный, положительное число имеет больше абсолютное значение, чем отрицательное. Перечислите все такие пары целых -15.
-1+15=14 -3+5=2
Вычислите сумму для каждой пары.
a=-3 b=5
Решение — это пара значений, сумма которых равна 2.
\left(x^{2}-3x\right)+\left(5x-15\right)
Перепишите x^{2}+2x-15 как \left(x^{2}-3x\right)+\left(5x-15\right).
x\left(x-3\right)+5\left(x-3\right)
Разложите x в первом и 5 в второй группе.
\left(x-3\right)\left(x+5\right)
Вынесите за скобки общий член x-3, используя свойство дистрибутивности.
x=3 x=-5
Чтобы найти решения для уравнений, решите x-3=0 и x+5=0у.
x^{2}+2x+1=16
Использование бинома Ньютона \left(a+b\right)^{2}=a^{2}+2ab+b^{2} для разложения \left(x+1\right)^{2}.
x^{2}+2x+1-16=0
Вычтите 16 из обеих частей уравнения.
x^{2}+2x-15=0
Вычтите 16 из 1, чтобы получить -15.
x=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 1 вместо a, 2 вместо b и -15 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
Возведите 2 в квадрат.
x=\frac{-2±\sqrt{4+60}}{2}
Умножьте -4 на -15.
x=\frac{-2±\sqrt{64}}{2}
Прибавьте 4 к 60.
x=\frac{-2±8}{2}
Извлеките квадратный корень из 64.
x=\frac{6}{2}
Решите уравнение x=\frac{-2±8}{2} при условии, что ± — плюс. Прибавьте -2 к 8.
x=3
Разделите 6 на 2.
x=-\frac{10}{2}
Решите уравнение x=\frac{-2±8}{2} при условии, что ± — минус. Вычтите 8 из -2.
x=-5
Разделите -10 на 2.
x=3 x=-5
Уравнение решено.
\sqrt{\left(x+1\right)^{2}}=\sqrt{16}
Извлеките квадратный корень из обеих частей уравнения.
x+1=4 x+1=-4
Упростите.
x=3 x=-5
Вычтите 1 из обеих частей уравнения.