Решение для x
\left\{\begin{matrix}x\in \mathrm{R}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\left(x>\frac{1}{2\pi n_{2}}\text{ and }x<0\right)\text{, }\text{false}\text{ and }\exists n_{3}\in \mathrm{Z}\text{ : }\left(x>\frac{2}{4\pi n_{3}+\pi }\text{ and }x<-\frac{2}{\pi -4\pi n_{3}}\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{2}{2\pi n_{1}+\pi }\text{ and }x\neq 0\\x\in \mathrm{R}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\left(x>\frac{1}{2\pi n_{2}+\pi }\text{ and }x<\frac{1}{2\pi n_{2}}\right)\text{, }not(n_{2}=0)\text{ and }not(n_{2}<1)\text{ and }\exists n_{3}\in \mathrm{Z}\text{ : }\left(x>\frac{2}{4\pi n_{3}+\pi }\text{ and }x<-\frac{2}{\pi -4\pi n_{3}}\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{2}{2\pi n_{1}+\pi }\text{ and }x\neq 0\\x\in \mathrm{R}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{2}{2\pi n_{1}+\pi }\text{ and }x>\frac{2}{\pi }\\x\in \mathrm{R}\text{, }&\exists n_{4}\in \mathrm{Z}\text{ : }\left(x>\frac{1}{2\pi n_{4}}\text{ and }x<-\frac{1}{\pi -2\pi n_{4}}\right)\text{ and }\exists n_{5}\in \mathrm{Z}\text{ : }\left(x>-\frac{2}{\pi -4\pi n_{5}}\text{ and }x<-\frac{2}{3\pi -4\pi n_{5}}\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{2}{2\pi n_{1}+\pi }\text{ and }x\neq 0\\x\in \mathrm{R}\text{, }&\exists n_{4}\in \mathrm{Z}\text{ : }\left(x>0\text{ and }x<\frac{1}{2\pi n_{4}}\right)\text{, }\text{false}\text{ and }\exists n_{5}\in \mathrm{Z}\text{ : }\left(x>-\frac{2}{\pi -4\pi n_{5}}\text{ and }x<-\frac{2}{3\pi -4\pi n_{5}}\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{2}{2\pi n_{1}+\pi }\text{ and }x\neq 0\\x\in \mathrm{R}\text{, }&\exists n_{5}\in \mathrm{Z}\text{ : }\left(x>-\frac{2}{\pi -4\pi n_{5}}\text{ and }x<-\frac{2}{3\pi -4\pi n_{5}}\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{2}{2\pi n_{1}+\pi }\text{ and }x<-\frac{1}{\pi }\end{matrix}\right,
График
Поделиться
Скопировано в буфер обмена
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}