Найдите n (комплексное решение)
\left\{\begin{matrix}n=\frac{n_{45}}{2x}\text{, }&x\neq 0\\n\in \mathrm{C}\text{, }&\left(n_{45}=0\text{ and }x=0\right)\text{ or }t=0\end{matrix}\right,
Найдите n_45 (комплексное решение)
\left\{\begin{matrix}\\n_{45}=2nx\text{, }&\text{unconditionally}\\n_{45}\in \mathrm{C}\text{, }&t=0\end{matrix}\right,
Найдите n
\left\{\begin{matrix}n=\frac{n_{45}}{2x}\text{, }&x\neq 0\\n\in \mathrm{R}\text{, }&\left(n_{45}=0\text{ and }x=0\right)\text{ or }t=0\end{matrix}\right,
Найдите n_45
\left\{\begin{matrix}\\n_{45}=2nx\text{, }&\text{unconditionally}\\n_{45}\in \mathrm{R}\text{, }&t=0\end{matrix}\right,
График
Поделиться
Скопировано в буфер обмена
tnx-2tn+tn\left(x+2\right)=tn_{45}
Чтобы умножить tn на x-2, используйте свойство дистрибутивности.
tnx-2tn+tnx+2tn=tn_{45}
Чтобы умножить tn на x+2, используйте свойство дистрибутивности.
2tnx-2tn+2tn=tn_{45}
Объедините tnx и tnx, чтобы получить 2tnx.
2tnx=tn_{45}
Объедините -2tn и 2tn, чтобы получить 0.
2txn=n_{45}t
Уравнение имеет стандартный вид.
\frac{2txn}{2tx}=\frac{n_{45}t}{2tx}
Разделите обе части на 2tx.
n=\frac{n_{45}t}{2tx}
Деление на 2tx аннулирует операцию умножения на 2tx.
n=\frac{n_{45}}{2x}
Разделите tn_{45} на 2tx.
tnx-2tn+tn\left(x+2\right)=tn_{45}
Чтобы умножить tn на x-2, используйте свойство дистрибутивности.
tnx-2tn+tnx+2tn=tn_{45}
Чтобы умножить tn на x+2, используйте свойство дистрибутивности.
2tnx-2tn+2tn=tn_{45}
Объедините tnx и tnx, чтобы получить 2tnx.
2tnx=tn_{45}
Объедините -2tn и 2tn, чтобы получить 0.
tn_{45}=2tnx
Поменяйте стороны местами, чтобы все переменные члены находились в левой части.
tn_{45}=2ntx
Уравнение имеет стандартный вид.
\frac{tn_{45}}{t}=\frac{2ntx}{t}
Разделите обе части на t.
n_{45}=\frac{2ntx}{t}
Деление на t аннулирует операцию умножения на t.
n_{45}=2nx
Разделите 2tnx на t.
tnx-2tn+tn\left(x+2\right)=tn_{45}
Чтобы умножить tn на x-2, используйте свойство дистрибутивности.
tnx-2tn+tnx+2tn=tn_{45}
Чтобы умножить tn на x+2, используйте свойство дистрибутивности.
2tnx-2tn+2tn=tn_{45}
Объедините tnx и tnx, чтобы получить 2tnx.
2tnx=tn_{45}
Объедините -2tn и 2tn, чтобы получить 0.
2txn=n_{45}t
Уравнение имеет стандартный вид.
\frac{2txn}{2tx}=\frac{n_{45}t}{2tx}
Разделите обе части на 2tx.
n=\frac{n_{45}t}{2tx}
Деление на 2tx аннулирует операцию умножения на 2tx.
n=\frac{n_{45}}{2x}
Разделите tn_{45} на 2tx.
tnx-2tn+tn\left(x+2\right)=tn_{45}
Чтобы умножить tn на x-2, используйте свойство дистрибутивности.
tnx-2tn+tnx+2tn=tn_{45}
Чтобы умножить tn на x+2, используйте свойство дистрибутивности.
2tnx-2tn+2tn=tn_{45}
Объедините tnx и tnx, чтобы получить 2tnx.
2tnx=tn_{45}
Объедините -2tn и 2tn, чтобы получить 0.
tn_{45}=2tnx
Поменяйте стороны местами, чтобы все переменные члены находились в левой части.
tn_{45}=2ntx
Уравнение имеет стандартный вид.
\frac{tn_{45}}{t}=\frac{2ntx}{t}
Разделите обе части на t.
n_{45}=\frac{2ntx}{t}
Деление на t аннулирует операцию умножения на t.
n_{45}=2nx
Разделите 2tnx на t.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}