Найдите a (комплексное решение)
\left\{\begin{matrix}a=-\frac{i\theta ^{-\frac{1}{2}}\sqrt{2\left(\cos(4\theta )-1\right)}}{4n\left(\cos(\theta )\right)^{2}}\text{; }a=\frac{i\theta ^{-\frac{1}{2}}\sqrt{2\left(\cos(4\theta )-1\right)}}{4n\left(\cos(\theta )\right)^{2}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\theta \neq 0\text{ and }n\neq 0\\a\in \mathrm{C}\text{, }&\left(n=0\text{ or }\theta =0\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\frac{\pi n_{2}}{2}\end{matrix}\right,
Найдите n (комплексное решение)
\left\{\begin{matrix}n=-\frac{i\theta ^{-\frac{1}{2}}\sqrt{2\left(\cos(4\theta )-1\right)}}{4a\left(\cos(\theta )\right)^{2}}\text{; }n=\frac{i\theta ^{-\frac{1}{2}}\sqrt{2\left(\cos(4\theta )-1\right)}}{4a\left(\cos(\theta )\right)^{2}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\theta \neq 0\text{ and }a\neq 0\\n\in \mathrm{C}\text{, }&\left(a=0\text{ or }\theta =0\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\frac{\pi n_{2}}{2}\end{matrix}\right,
Найдите a
\left\{\begin{matrix}a=\frac{\sqrt{-\frac{\left(\cos(\theta )\right)^{2}-1}{\theta }}}{|n||\cos(\theta )|}\text{; }a=-\frac{\sqrt{-\frac{\left(\cos(\theta )\right)^{2}-1}{\theta }}}{|n||\cos(\theta )|}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\pi n_{2}\text{, }not(n_{2}=0)\text{ and }n\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\theta \neq 0\\a\in \mathrm{R}\text{, }&\left(\theta =0\text{ or }n=0\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\pi n_{2}\text{, }not(n_{2}=0)\end{matrix}\right,
Найдите n
\left\{\begin{matrix}n=\frac{\sqrt{-\frac{\left(\cos(\theta )\right)^{2}-1}{\theta }}}{|a||\cos(\theta )|}\text{; }n=-\frac{\sqrt{-\frac{\left(\cos(\theta )\right)^{2}-1}{\theta }}}{|a||\cos(\theta )|}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\pi n_{2}\text{, }not(n_{2}=0)\text{ and }a\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\theta \neq 0\\n\in \mathrm{R}\text{, }&\left(\theta =0\text{ or }a=0\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\pi n_{2}\text{, }not(n_{2}=0)\end{matrix}\right,
График
Поделиться
Скопировано в буфер обмена
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}