Перейти к основному содержанию
Вычислить
Tick mark Image

Подобные задачи из результатов поиска в Интернете

Поделиться

\int x^{3}+x^{2}+x\mathrm{d}x
Оцените неопределенный интеграл первым.
\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Интегрируйте сумму по членам.
\frac{x^{4}}{4}+\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Так как \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замените \int x^{3}\mathrm{d}x \frac{x^{4}}{4}.
\frac{x^{4}}{4}+\frac{x^{3}}{3}+\int x\mathrm{d}x
Так как \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замените \int x^{2}\mathrm{d}x \frac{x^{3}}{3}.
\frac{x^{4}}{4}+\frac{x^{3}}{3}+\frac{x^{2}}{2}
Так как \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замените \int x\mathrm{d}x \frac{x^{2}}{2}.
\frac{4^{4}}{4}+\frac{4^{3}}{3}+\frac{4^{2}}{2}-\left(\frac{0^{4}}{4}+\frac{0^{3}}{3}+\frac{0^{2}}{2}\right)
Определенный интеграл является первообразной выражения, оцененным по верхнему пределу интеграции, за вычетом первообразной, оцененного по нижнему пределу интеграции.
\frac{280}{3}
Упростите.