Перейти к основному содержанию
Вычислить
Tick mark Image

Подобные задачи из результатов поиска в Интернете

Поделиться

\int _{-2}^{5}64x^{3}-144x^{2}+108x-27\mathrm{d}x
Использование бинома Ньютона \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} для разложения \left(4x-3\right)^{3}.
\int 64x^{3}-144x^{2}+108x-27\mathrm{d}x
Оцените неопределенный интеграл первым.
\int 64x^{3}\mathrm{d}x+\int -144x^{2}\mathrm{d}x+\int 108x\mathrm{d}x+\int -27\mathrm{d}x
Интегрируйте сумму по членам.
64\int x^{3}\mathrm{d}x-144\int x^{2}\mathrm{d}x+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Вычтите постоянную в каждом из членов.
16x^{4}-144\int x^{2}\mathrm{d}x+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Так как \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замените \int x^{3}\mathrm{d}x \frac{x^{4}}{4}. Умножьте 64 на \frac{x^{4}}{4}.
16x^{4}-48x^{3}+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Так как \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замените \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Умножьте -144 на \frac{x^{3}}{3}.
16x^{4}-48x^{3}+54x^{2}+\int -27\mathrm{d}x
Так как \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замените \int x\mathrm{d}x \frac{x^{2}}{2}. Умножьте 108 на \frac{x^{2}}{2}.
16x^{4}-48x^{3}+54x^{2}-27x
Найдите интеграл -27 с помощью таблицы правил "Общие интегралы" \int a\mathrm{d}x=ax.
16\times 5^{4}-48\times 5^{3}+54\times 5^{2}-27\times 5-\left(16\left(-2\right)^{4}-48\left(-2\right)^{3}+54\left(-2\right)^{2}-27\left(-2\right)\right)
Определенный интеграл является первообразной выражения, оцененным по верхнему пределу интеграции, за вычетом первообразной, оцененного по нижнему пределу интеграции.
4305
Упростите.