Перейти к основному содержанию
Вычислить
Tick mark Image

Подобные задачи из результатов поиска в Интернете

Поделиться

\int _{-2}^{2}16x^{2}-8xx^{3}+\left(x^{3}\right)^{2}\mathrm{d}x
Использование бинома Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2} для разложения \left(4x-x^{3}\right)^{2}.
\int _{-2}^{2}16x^{2}-8x^{4}+\left(x^{3}\right)^{2}\mathrm{d}x
Чтобы перемножить степени с одинаковым основанием, сложите их показатели. Сложите 1 и 3, чтобы получить 4.
\int _{-2}^{2}16x^{2}-8x^{4}+x^{6}\mathrm{d}x
Чтобы возвести степень в другую степень, перемножьте показатели. Перемножьте 3 и 2, чтобы получить 6.
\int 16x^{2}-8x^{4}+x^{6}\mathrm{d}x
Оцените неопределенный интеграл первым.
\int 16x^{2}\mathrm{d}x+\int -8x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Интегрируйте сумму по членам.
16\int x^{2}\mathrm{d}x-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Вычтите постоянную в каждом из членов.
\frac{16x^{3}}{3}-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Так как \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замените \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Умножьте 16 на \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\int x^{6}\mathrm{d}x
Так как \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замените \int x^{4}\mathrm{d}x \frac{x^{5}}{5}. Умножьте -8 на \frac{x^{5}}{5}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\frac{x^{7}}{7}
Так как \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замените \int x^{6}\mathrm{d}x \frac{x^{7}}{7}.
\frac{x^{7}}{7}-\frac{8x^{5}}{5}+\frac{16x^{3}}{3}
Упростите.
\frac{2^{7}}{7}-\frac{8}{5}\times 2^{5}+\frac{16}{3}\times 2^{3}-\left(\frac{\left(-2\right)^{7}}{7}-\frac{8}{5}\left(-2\right)^{5}+\frac{16}{3}\left(-2\right)^{3}\right)
Определенный интеграл является первообразной выражения, оцененным по верхнему пределу интеграции, за вычетом первообразной, оцененного по нижнему пределу интеграции.
\frac{2048}{105}
Упростите.