Перейти к основному содержанию
Вычислить
Tick mark Image
Дифференцировать по x
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

\frac{3}{\left(-x+1\right)\left(2x+1\right)}+\frac{x}{x-1}
Разложите на множители выражение 1+x-2x^{2}.
\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)}+\frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}
Чтобы выполнить сложение или вычитание нескольких выражений, приведите их к одному знаменателю. Наименьшее общее кратное чисел \left(-x+1\right)\left(2x+1\right) и x-1 равно \left(x-1\right)\left(2x+1\right). Умножьте \frac{3}{\left(-x+1\right)\left(2x+1\right)} на \frac{-1}{-1}. Умножьте \frac{x}{x-1} на \frac{2x+1}{2x+1}.
\frac{3\left(-1\right)+x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)}
Поскольку числа \frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)} и \frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)} имеют одинаковый знаменатель, выполните операцию сложения с помощью числителей.
\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}
Выполните умножение в 3\left(-1\right)+x\left(2x+1\right).
\frac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(2x+1\right)}
Разложите на множители еще не разложенные выражения в формуле \frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}.
\frac{2x+3}{2x+1}
Сократите x-1 в числителе и знаменателе.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{\left(-x+1\right)\left(2x+1\right)}+\frac{x}{x-1})
Разложите на множители выражение 1+x-2x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)}+\frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)})
Чтобы выполнить сложение или вычитание нескольких выражений, приведите их к одному знаменателю. Наименьшее общее кратное чисел \left(-x+1\right)\left(2x+1\right) и x-1 равно \left(x-1\right)\left(2x+1\right). Умножьте \frac{3}{\left(-x+1\right)\left(2x+1\right)} на \frac{-1}{-1}. Умножьте \frac{x}{x-1} на \frac{2x+1}{2x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-1\right)+x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)})
Поскольку числа \frac{3\left(-1\right)}{\left(x-1\right)\left(2x+1\right)} и \frac{x\left(2x+1\right)}{\left(x-1\right)\left(2x+1\right)} имеют одинаковый знаменатель, выполните операцию сложения с помощью числителей.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)})
Выполните умножение в 3\left(-1\right)+x\left(2x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-1\right)\left(2x+3\right)}{\left(x-1\right)\left(2x+1\right)})
Разложите на множители еще не разложенные выражения в формуле \frac{-3+2x^{2}+x}{\left(x-1\right)\left(2x+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+3}{2x+1})
Сократите x-1 в числителе и знаменателе.
\frac{\left(2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+3)-\left(2x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)}{\left(2x^{1}+1\right)^{2}}
Для двух любых дифференцируемых функций производная частного этих функций равна разности произведения знаменателя и производной числителя и произведения числителя и производной знаменателя, деленной на квадрат знаменателя.
\frac{\left(2x^{1}+1\right)\times 2x^{1-1}-\left(2x^{1}+3\right)\times 2x^{1-1}}{\left(2x^{1}+1\right)^{2}}
Производная многочлена равна сумме производных его членов. Производная любой константы равна 0. Производная ax^{n} равна nax^{n-1}.
\frac{\left(2x^{1}+1\right)\times 2x^{0}-\left(2x^{1}+3\right)\times 2x^{0}}{\left(2x^{1}+1\right)^{2}}
Выполните арифметические операции.
\frac{2x^{1}\times 2x^{0}+2x^{0}-\left(2x^{1}\times 2x^{0}+3\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Разложите, используя свойство дистрибутивности.
\frac{2\times 2x^{1}+2x^{0}-\left(2\times 2x^{1}+3\times 2x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Чтобы перемножить степени с одинаковым основанием, сложите их показатели.
\frac{4x^{1}+2x^{0}-\left(4x^{1}+6x^{0}\right)}{\left(2x^{1}+1\right)^{2}}
Выполните арифметические операции.
\frac{4x^{1}+2x^{0}-4x^{1}-6x^{0}}{\left(2x^{1}+1\right)^{2}}
Удалите лишние скобки.
\frac{\left(4-4\right)x^{1}+\left(2-6\right)x^{0}}{\left(2x^{1}+1\right)^{2}}
Объедините подобные члены.
\frac{-4x^{0}}{\left(2x^{1}+1\right)^{2}}
Вычтите 4 из 4 и 6 из 2.
\frac{-4x^{0}}{\left(2x+1\right)^{2}}
Для любого члена t, t^{1}=t.
\frac{-4}{\left(2x+1\right)^{2}}
Для любого члена t, за исключением 0, t^{0}=1.