Вычислить
\frac{1}{y^{5}}
Дифференцировать по y
-\frac{5}{y^{6}}
График
Поделиться
Скопировано в буфер обмена
\frac{y^{2}}{y^{7}}
Чтобы перемножить степени с одинаковым основанием, сложите их показатели. Сложите 2 и 0, чтобы получить 2.
\frac{1}{y^{5}}
Перепишите y^{7} как y^{2}y^{5}. Сократите y^{2} в числителе и знаменателе.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{2}}{y^{7}})
Чтобы перемножить степени с одинаковым основанием, сложите их показатели. Сложите 2 и 0, чтобы получить 2.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y^{5}})
Перепишите y^{7} как y^{2}y^{5}. Сократите y^{2} в числителе и знаменателе.
-\left(y^{5}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}y}(y^{5})
Если F является композицией двух дифференцируемых функций f\left(u\right) и u=g\left(x\right), то есть если F\left(x\right)=f\left(g\left(x\right)\right), то производная F равна произведению производной f по u и производной g по x, то есть \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(y^{5}\right)^{-2}\times 5y^{5-1}
Производная многочлена равна сумме производных его членов. Производная любой константы равна 0. Производная ax^{n} равна nax^{n-1}.
-5y^{4}\left(y^{5}\right)^{-2}
Упростите.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}