Вычислить
\frac{6427876096865393}{6427876096865394}\approx 1
Разложить на множители
\frac{6427876096865393}{2 \cdot 37 \cdot 47 \cdot 79 \cdot 241 \cdot 10785773 \cdot 3 ^ {2}} = 0,9999999999999999
Поделиться
Скопировано в буфер обмена
\frac{0,6427876096865393 \cdot 0,984807753012208}{0,6427876096865394 \cdot 0,984807753012208}
Определите тригонометрические функции в задаче
\frac{0,6427876096865393}{0,6427876096865394\times 0,984807753012208^{0}}
Чтобы разделить одну степень на другую с таким же основанием, вычтите показатель числителя из показателя знаменателя.
\frac{0,6427876096865393}{0,6427876096865394\times 1}
Вычислите 0,984807753012208 в степени 0 и получите 1.
\frac{0,6427876096865393}{0,6427876096865394}
Перемножьте 0,6427876096865394 и 1, чтобы получить 0,6427876096865394.
\frac{6427876096865393}{6427876096865394}
Раскройте число \frac{0,6427876096865393}{0,6427876096865394} , умножив числитель и знаменатель на 10000000000000000.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}