Перейти к основному содержанию
Найдите x
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

\left(x+3\right)x+\left(x-2\right)\times 2=10
Переменная x не может равняться ни одному из этих значений (-3,2), так как деление на ноль не определено. Умножьте обе стороны уравнения на \left(x-2\right)\left(x+3\right), наименьшее общее кратное чисел x-2,x+3,x^{2}+x-6.
x^{2}+3x+\left(x-2\right)\times 2=10
Чтобы умножить x+3 на x, используйте свойство дистрибутивности.
x^{2}+3x+2x-4=10
Чтобы умножить x-2 на 2, используйте свойство дистрибутивности.
x^{2}+5x-4=10
Объедините 3x и 2x, чтобы получить 5x.
x^{2}+5x-4-10=0
Вычтите 10 из обеих частей уравнения.
x^{2}+5x-14=0
Вычтите 10 из -4, чтобы получить -14.
a+b=5 ab=-14
Чтобы решить уравнение, фактор x^{2}+5x-14 с помощью формулы x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Чтобы найти a и b, настройте систему на ее устранение.
-1,14 -2,7
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b положительный, положительное число имеет больше абсолютное значение, чем отрицательное. Перечислите все такие пары целых -14.
-1+14=13 -2+7=5
Вычислите сумму для каждой пары.
a=-2 b=7
Решение — это пара значений, сумма которых равна 5.
\left(x-2\right)\left(x+7\right)
Перезапишите разложенное на множители выражение \left(x+a\right)\left(x+b\right) с использованием полученных значений.
x=2 x=-7
Чтобы найти решения для уравнений, решите x-2=0 и x+7=0у.
x=-7
Переменная x не может равняться 2.
\left(x+3\right)x+\left(x-2\right)\times 2=10
Переменная x не может равняться ни одному из этих значений (-3,2), так как деление на ноль не определено. Умножьте обе стороны уравнения на \left(x-2\right)\left(x+3\right), наименьшее общее кратное чисел x-2,x+3,x^{2}+x-6.
x^{2}+3x+\left(x-2\right)\times 2=10
Чтобы умножить x+3 на x, используйте свойство дистрибутивности.
x^{2}+3x+2x-4=10
Чтобы умножить x-2 на 2, используйте свойство дистрибутивности.
x^{2}+5x-4=10
Объедините 3x и 2x, чтобы получить 5x.
x^{2}+5x-4-10=0
Вычтите 10 из обеих частей уравнения.
x^{2}+5x-14=0
Вычтите 10 из -4, чтобы получить -14.
a+b=5 ab=1\left(-14\right)=-14
Чтобы решить уравнение, разложите левую сторону на множители путем группировки. Сначала левую сторону необходимо перезаписать в следующем виде: x^{2}+ax+bx-14. Чтобы найти a и b, настройте систему на ее устранение.
-1,14 -2,7
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b положительный, положительное число имеет больше абсолютное значение, чем отрицательное. Перечислите все такие пары целых -14.
-1+14=13 -2+7=5
Вычислите сумму для каждой пары.
a=-2 b=7
Решение — это пара значений, сумма которых равна 5.
\left(x^{2}-2x\right)+\left(7x-14\right)
Перепишите x^{2}+5x-14 как \left(x^{2}-2x\right)+\left(7x-14\right).
x\left(x-2\right)+7\left(x-2\right)
Разложите x в первом и 7 в второй группе.
\left(x-2\right)\left(x+7\right)
Вынесите за скобки общий член x-2, используя свойство дистрибутивности.
x=2 x=-7
Чтобы найти решения для уравнений, решите x-2=0 и x+7=0у.
x=-7
Переменная x не может равняться 2.
\left(x+3\right)x+\left(x-2\right)\times 2=10
Переменная x не может равняться ни одному из этих значений (-3,2), так как деление на ноль не определено. Умножьте обе стороны уравнения на \left(x-2\right)\left(x+3\right), наименьшее общее кратное чисел x-2,x+3,x^{2}+x-6.
x^{2}+3x+\left(x-2\right)\times 2=10
Чтобы умножить x+3 на x, используйте свойство дистрибутивности.
x^{2}+3x+2x-4=10
Чтобы умножить x-2 на 2, используйте свойство дистрибутивности.
x^{2}+5x-4=10
Объедините 3x и 2x, чтобы получить 5x.
x^{2}+5x-4-10=0
Вычтите 10 из обеих частей уравнения.
x^{2}+5x-14=0
Вычтите 10 из -4, чтобы получить -14.
x=\frac{-5±\sqrt{5^{2}-4\left(-14\right)}}{2}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 1 вместо a, 5 вместо b и -14 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-14\right)}}{2}
Возведите 5 в квадрат.
x=\frac{-5±\sqrt{25+56}}{2}
Умножьте -4 на -14.
x=\frac{-5±\sqrt{81}}{2}
Прибавьте 25 к 56.
x=\frac{-5±9}{2}
Извлеките квадратный корень из 81.
x=\frac{4}{2}
Решите уравнение x=\frac{-5±9}{2} при условии, что ± — плюс. Прибавьте -5 к 9.
x=2
Разделите 4 на 2.
x=-\frac{14}{2}
Решите уравнение x=\frac{-5±9}{2} при условии, что ± — минус. Вычтите 9 из -5.
x=-7
Разделите -14 на 2.
x=2 x=-7
Уравнение решено.
x=-7
Переменная x не может равняться 2.
\left(x+3\right)x+\left(x-2\right)\times 2=10
Переменная x не может равняться ни одному из этих значений (-3,2), так как деление на ноль не определено. Умножьте обе стороны уравнения на \left(x-2\right)\left(x+3\right), наименьшее общее кратное чисел x-2,x+3,x^{2}+x-6.
x^{2}+3x+\left(x-2\right)\times 2=10
Чтобы умножить x+3 на x, используйте свойство дистрибутивности.
x^{2}+3x+2x-4=10
Чтобы умножить x-2 на 2, используйте свойство дистрибутивности.
x^{2}+5x-4=10
Объедините 3x и 2x, чтобы получить 5x.
x^{2}+5x=10+4
Прибавьте 4 к обеим частям.
x^{2}+5x=14
Чтобы вычислить 14, сложите 10 и 4.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=14+\left(\frac{5}{2}\right)^{2}
Деление 5, коэффициент x термина, 2 для получения \frac{5}{2}. Затем добавьте квадрат \frac{5}{2} к обеим частям уравнения. Этот шаг поворачивается в левой части уравнения до идеального квадрата.
x^{2}+5x+\frac{25}{4}=14+\frac{25}{4}
Возведите \frac{5}{2} в квадрат путем возведения числителя и знаменателя дроби в квадрат.
x^{2}+5x+\frac{25}{4}=\frac{81}{4}
Прибавьте 14 к \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{81}{4}
Коэффициент x^{2}+5x+\frac{25}{4}. Как правило, если x^{2}+bx+c является идеальным квадратом, его всегда можно разложить как \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Извлеките квадратный корень из обеих частей уравнения.
x+\frac{5}{2}=\frac{9}{2} x+\frac{5}{2}=-\frac{9}{2}
Упростите.
x=2 x=-7
Вычтите \frac{5}{2} из обеих частей уравнения.
x=-7
Переменная x не может равняться 2.