Найдите s
s=6
Поделиться
Скопировано в буфер обмена
\left(s+3\right)s-\left(s-3\right)s=36
Переменная s не может равняться ни одному из этих значений (-3,3), так как деление на ноль не определено. Умножьте обе стороны уравнения на \left(s-3\right)\left(s+3\right), наименьшее общее кратное чисел s-3,s+3,s^{2}-9.
s^{2}+3s-\left(s-3\right)s=36
Чтобы умножить s+3 на s, используйте свойство дистрибутивности.
s^{2}+3s-\left(s^{2}-3s\right)=36
Чтобы умножить s-3 на s, используйте свойство дистрибутивности.
s^{2}+3s-s^{2}+3s=36
Чтобы найти противоположное значение выражения s^{2}-3s, необходимо найти противоположное значение для каждого члена.
3s+3s=36
Объедините s^{2} и -s^{2}, чтобы получить 0.
6s=36
Объедините 3s и 3s, чтобы получить 6s.
s=\frac{36}{6}
Разделите обе части на 6.
s=6
Разделите 36 на 6, чтобы получить 6.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}