Вычислить
\frac{\sqrt{21}}{5}+\frac{2\sqrt{7}}{5}-\frac{3\sqrt{2}}{5}-\frac{3\sqrt{6}}{10}\approx 0,391440603
Викторина
Arithmetic
5 задач, подобных этой:
\frac { 2 + \sqrt { 3 } } { 3 \sqrt { 2 } + 2 \sqrt { 7 } }
Поделиться
Скопировано в буфер обмена
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{\left(3\sqrt{2}+2\sqrt{7}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}
Избавьтесь от иррациональности в знаменателе дроби \frac{2+\sqrt{3}}{3\sqrt{2}+2\sqrt{7}}, умножив числитель и знаменатель на 3\sqrt{2}-2\sqrt{7}.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{7}\right)^{2}}
Учтите \left(3\sqrt{2}+2\sqrt{7}\right)\left(3\sqrt{2}-2\sqrt{7}\right). Умножение можно преобразовать в разность квадратов с помощью следующего правила: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{7}\right)^{2}}
Разложите \left(3\sqrt{2}\right)^{2}.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{7}\right)^{2}}
Вычислите 3 в степени 2 и получите 9.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{9\times 2-\left(2\sqrt{7}\right)^{2}}
Квадрат выражения \sqrt{2} равен 2.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-\left(2\sqrt{7}\right)^{2}}
Перемножьте 9 и 2, чтобы получить 18.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-2^{2}\left(\sqrt{7}\right)^{2}}
Разложите \left(2\sqrt{7}\right)^{2}.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-4\left(\sqrt{7}\right)^{2}}
Вычислите 2 в степени 2 и получите 4.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-4\times 7}
Квадрат выражения \sqrt{7} равен 7.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{18-28}
Перемножьте 4 и 7, чтобы получить 28.
\frac{\left(2+\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{7}\right)}{-10}
Вычтите 28 из 18, чтобы получить -10.
\frac{6\sqrt{2}-4\sqrt{7}+3\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{7}}{-10}
Используйте свойство дистрибутивности, умножив каждый член 2+\sqrt{3} на каждый член 3\sqrt{2}-2\sqrt{7}.
\frac{6\sqrt{2}-4\sqrt{7}+3\sqrt{6}-2\sqrt{3}\sqrt{7}}{-10}
Чтобы перемножить \sqrt{3} и \sqrt{2}, перемножьте номера в квадратном корне.
\frac{6\sqrt{2}-4\sqrt{7}+3\sqrt{6}-2\sqrt{21}}{-10}
Чтобы перемножить \sqrt{3} и \sqrt{7}, перемножьте номера в квадратном корне.
\frac{-6\sqrt{2}+4\sqrt{7}-3\sqrt{6}+2\sqrt{21}}{10}
Умножьте числитель и знаменатель на -1.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}