Вычислить
\frac{nm^{2}}{24p^{11}}
Разложите
\frac{nm^{2}}{24p^{11}}
Поделиться
Скопировано в буфер обмена
\frac{2^{-2}\left(m^{-3}\right)^{-2}\left(n^{2}\right)^{-2}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
Разложите \left(2m^{-3}n^{2}p^{4}\right)^{-2}.
\frac{2^{-2}m^{6}\left(n^{2}\right)^{-2}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
Чтобы возвести степень в другую степень, перемножьте показатели. Перемножьте -3 и -2, чтобы получить 6.
\frac{2^{-2}m^{6}n^{-4}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
Чтобы возвести степень в другую степень, перемножьте показатели. Перемножьте 2 и -2, чтобы получить -4.
\frac{2^{-2}m^{6}n^{-4}p^{-8}}{6m^{4}n^{-5}p^{3}}
Чтобы возвести степень в другую степень, перемножьте показатели. Перемножьте 4 и -2, чтобы получить -8.
\frac{\frac{1}{4}m^{6}n^{-4}p^{-8}}{6m^{4}n^{-5}p^{3}}
Вычислите 2 в степени -2 и получите \frac{1}{4}.
\frac{\frac{1}{4}p^{-8}n^{-4}m^{2}}{6n^{-5}p^{3}}
Сократите m^{4} в числителе и знаменателе.
\frac{\frac{1}{4}p^{-8}n^{1}m^{2}}{6p^{3}}
Чтобы выполнить деление степеней с одинаковым основанием, вычтите показатель знаменателя из показателя числителя.
\frac{\frac{1}{4}n^{1}m^{2}}{6p^{11}}
Чтобы разделить одну степень на другую с таким же основанием, вычтите показатель числителя из показателя знаменателя.
\frac{\frac{1}{4}nm^{2}}{6p^{11}}
Вычислите n в степени 1 и получите n.
\frac{2^{-2}\left(m^{-3}\right)^{-2}\left(n^{2}\right)^{-2}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
Разложите \left(2m^{-3}n^{2}p^{4}\right)^{-2}.
\frac{2^{-2}m^{6}\left(n^{2}\right)^{-2}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
Чтобы возвести степень в другую степень, перемножьте показатели. Перемножьте -3 и -2, чтобы получить 6.
\frac{2^{-2}m^{6}n^{-4}\left(p^{4}\right)^{-2}}{6m^{4}n^{-5}p^{3}}
Чтобы возвести степень в другую степень, перемножьте показатели. Перемножьте 2 и -2, чтобы получить -4.
\frac{2^{-2}m^{6}n^{-4}p^{-8}}{6m^{4}n^{-5}p^{3}}
Чтобы возвести степень в другую степень, перемножьте показатели. Перемножьте 4 и -2, чтобы получить -8.
\frac{\frac{1}{4}m^{6}n^{-4}p^{-8}}{6m^{4}n^{-5}p^{3}}
Вычислите 2 в степени -2 и получите \frac{1}{4}.
\frac{\frac{1}{4}p^{-8}n^{-4}m^{2}}{6n^{-5}p^{3}}
Сократите m^{4} в числителе и знаменателе.
\frac{\frac{1}{4}p^{-8}n^{1}m^{2}}{6p^{3}}
Чтобы выполнить деление степеней с одинаковым основанием, вычтите показатель знаменателя из показателя числителя.
\frac{\frac{1}{4}n^{1}m^{2}}{6p^{11}}
Чтобы разделить одну степень на другую с таким же основанием, вычтите показатель числителя из показателя знаменателя.
\frac{\frac{1}{4}nm^{2}}{6p^{11}}
Вычислите n в степени 1 и получите n.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}