Вычислить
\frac{4\left(2a-1\right)}{\left(a+6\right)a^{2}}
Разложите
\frac{4\left(2a-1\right)}{\left(a+6\right)a^{2}}
Поделиться
Скопировано в буфер обмена
\left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Чтобы выполнить сложение или вычитание нескольких выражений, приведите их к одному знаменателю. Умножьте -a-1 на \frac{a+1}{a+1}.
\left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Поскольку числа \frac{2a+10}{a+1} и \frac{\left(-a-1\right)\left(a+1\right)}{a+1} имеют одинаковый знаменатель, выполните операцию сложения с помощью числителей.
\left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Выполните умножение в 2a+10+\left(-a-1\right)\left(a+1\right).
\left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Приведите подобные члены в 2a+10-a^{2}-a-a-1.
\left(\frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Разделите \frac{a^{2}-5a+6}{a^{2}+7a+6} на \frac{9-a^{2}}{a+1}, умножив \frac{a^{2}-5a+6}{a^{2}+7a+6} на величину, обратную \frac{9-a^{2}}{a+1}.
\left(\frac{\left(a-3\right)\left(a-2\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(a+1\right)\left(a+6\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Разложите на множители еще не разложенные выражения в формуле \frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}.
\left(\frac{a-2}{\left(-a-3\right)\left(a+6\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Сократите \left(a-3\right)\left(a+1\right) в числителе и знаменателе.
\left(\frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)}+\frac{a+6}{\left(a+3\right)\left(a+6\right)}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Чтобы выполнить сложение или вычитание нескольких выражений, приведите их к одному знаменателю. Наименьшее общее кратное чисел \left(-a-3\right)\left(a+6\right) и a+3 равно \left(a+3\right)\left(a+6\right). Умножьте \frac{a-2}{\left(-a-3\right)\left(a+6\right)} на \frac{-1}{-1}. Умножьте \frac{1}{a+3} на \frac{a+6}{a+6}.
\frac{-\left(a-2\right)+a+6}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}
Поскольку числа \frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)} и \frac{a+6}{\left(a+3\right)\left(a+6\right)} имеют одинаковый знаменатель, выполните операцию сложения с помощью числителей.
\frac{-a+2+a+6}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}
Выполните умножение в -\left(a-2\right)+a+6.
\frac{8}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}
Приведите подобные члены в -a+2+a+6.
\frac{8\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)\times 2a^{2}}
Умножить \frac{8}{\left(a+3\right)\left(a+6\right)} на \frac{2a^{2}+5a-3}{2a^{2}}, перемножив числители и знаменатели.
\frac{4\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}
Сократите 2 в числителе и знаменателе.
\frac{4\left(2a-1\right)\left(a+3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}
Разложите на множители еще не разложенные выражения.
\frac{4\left(2a-1\right)}{\left(a+6\right)a^{2}}
Сократите a+3 в числителе и знаменателе.
\frac{8a-4}{a^{3}+6a^{2}}
Раскройте скобки в выражении.
\left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Чтобы выполнить сложение или вычитание нескольких выражений, приведите их к одному знаменателю. Умножьте -a-1 на \frac{a+1}{a+1}.
\left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Поскольку числа \frac{2a+10}{a+1} и \frac{\left(-a-1\right)\left(a+1\right)}{a+1} имеют одинаковый знаменатель, выполните операцию сложения с помощью числителей.
\left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Выполните умножение в 2a+10+\left(-a-1\right)\left(a+1\right).
\left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Приведите подобные члены в 2a+10-a^{2}-a-a-1.
\left(\frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Разделите \frac{a^{2}-5a+6}{a^{2}+7a+6} на \frac{9-a^{2}}{a+1}, умножив \frac{a^{2}-5a+6}{a^{2}+7a+6} на величину, обратную \frac{9-a^{2}}{a+1}.
\left(\frac{\left(a-3\right)\left(a-2\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(a+1\right)\left(a+6\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Разложите на множители еще не разложенные выражения в формуле \frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}.
\left(\frac{a-2}{\left(-a-3\right)\left(a+6\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Сократите \left(a-3\right)\left(a+1\right) в числителе и знаменателе.
\left(\frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)}+\frac{a+6}{\left(a+3\right)\left(a+6\right)}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}
Чтобы выполнить сложение или вычитание нескольких выражений, приведите их к одному знаменателю. Наименьшее общее кратное чисел \left(-a-3\right)\left(a+6\right) и a+3 равно \left(a+3\right)\left(a+6\right). Умножьте \frac{a-2}{\left(-a-3\right)\left(a+6\right)} на \frac{-1}{-1}. Умножьте \frac{1}{a+3} на \frac{a+6}{a+6}.
\frac{-\left(a-2\right)+a+6}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}
Поскольку числа \frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)} и \frac{a+6}{\left(a+3\right)\left(a+6\right)} имеют одинаковый знаменатель, выполните операцию сложения с помощью числителей.
\frac{-a+2+a+6}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}
Выполните умножение в -\left(a-2\right)+a+6.
\frac{8}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}
Приведите подобные члены в -a+2+a+6.
\frac{8\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)\times 2a^{2}}
Умножить \frac{8}{\left(a+3\right)\left(a+6\right)} на \frac{2a^{2}+5a-3}{2a^{2}}, перемножив числители и знаменатели.
\frac{4\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}
Сократите 2 в числителе и знаменателе.
\frac{4\left(2a-1\right)\left(a+3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}
Разложите на множители еще не разложенные выражения.
\frac{4\left(2a-1\right)}{\left(a+6\right)a^{2}}
Сократите a+3 в числителе и знаменателе.
\frac{8a-4}{a^{3}+6a^{2}}
Раскройте скобки в выражении.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}