Stuðull
\left(x-6\right)\left(x+2\right)
Meta
\left(x-6\right)\left(x+2\right)
Graf
Spurningakeppni
Polynomial
5 vandamál svipuð og:
x^2-4x-12
Deila
Afritað á klemmuspjald
a+b=-4 ab=1\left(-12\right)=-12
Þáttaðu segðina með því að flokka. Fyrst þarf að endurskrifa segðina sem x^{2}+ax+bx-12. Settu upp kerfi til að leysa til þess að finna a og b.
1,-12 2,-6 3,-4
Fyrst ab er mínus hafa a og b gagnstæð merki. Fyrst a+b er mínus hefur neikvæða talan hærra algildi en sú jákvæða. Skráðu inn öll slík pör sem gefa margfeldið -12.
1-12=-11 2-6=-4 3-4=-1
Reiknaðu summuna fyrir hvert par.
a=-6 b=2
Lausnin er parið sem gefur summuna -4.
\left(x^{2}-6x\right)+\left(2x-12\right)
Endurskrifa x^{2}-4x-12 sem \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
Taktu x út fyrir sviga í fyrsta hópi og 2 í öðrum hópi.
\left(x-6\right)\left(x+2\right)
Taktu sameiginlega liðinn x-6 út fyrir sviga með því að nota dreifieiginleika.
x^{2}-4x-12=0
Þætta má margliðu með færslunni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), þar sem x_{1} og x_{2} eru rætur annars stigs jöfnunnar ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
Hefðu -4 í annað veldi.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
Margfaldaðu -4 sinnum -12.
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
Leggðu 16 saman við 48.
x=\frac{-\left(-4\right)±8}{2}
Finndu kvaðratrót 64.
x=\frac{4±8}{2}
Gagnstæð tala tölunnar -4 er 4.
x=\frac{12}{2}
Leystu nú jöfnuna x=\frac{4±8}{2} þegar ± er plús. Leggðu 4 saman við 8.
x=6
Deildu 12 með 2.
x=-\frac{4}{2}
Leystu nú jöfnuna x=\frac{4±8}{2} þegar ± er mínus. Dragðu 8 frá 4.
x=-2
Deildu -4 með 2.
x^{2}-4x-12=\left(x-6\right)\left(x-\left(-2\right)\right)
Þættu upprunalegu segðina með ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Skiptu 6 út fyrir x_{1} og -2 út fyrir x_{2}.
x^{2}-4x-12=\left(x-6\right)\left(x+2\right)
Einfaldaðu allar segðir formsins p-\left(-q\right) í p+q.