Faktor
\left(x-2\right)\left(3x-4\right)
Izračunaj
\left(x-2\right)\left(3x-4\right)
Grafikon
Dijeliti
Kopirano u međuspremnik
a+b=-10 ab=3\times 8=24
Grupiranjem rastavite izraz na faktore. Izraz je najprije potrebno prepisati kao 3x^{2}+ax+bx+8. Da biste pronašli a i b, postavite sustav koji će biti riješiti.
-1,-24 -2,-12 -3,-8 -4,-6
Budući da je ab pozitivni, a i b imaju isti znak. Budući da je a+b negativan, a i b su negativni. Navedi sve kao cijeli broj koji daje 24 proizvoda.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Izračunaj zbroj za svaki par.
a=-6 b=-4
Rješenje je par koji daje zbroj -10.
\left(3x^{2}-6x\right)+\left(-4x+8\right)
Izrazite 3x^{2}-10x+8 kao \left(3x^{2}-6x\right)+\left(-4x+8\right).
3x\left(x-2\right)-4\left(x-2\right)
Faktor 3x u prvom i -4 u drugoj grupi.
\left(x-2\right)\left(3x-4\right)
Faktor uobičajeni termin x-2 korištenjem distribucije svojstva.
3x^{2}-10x+8=0
Kvadratni polinom može se rastaviti na faktore pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), u kojoj su x_{1} i x_{2} rješenja kvadratne jednadžbe ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\times 8}}{2\times 3}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne jednadžbe: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna jednadžba ima dva rješenja: jedno kad je ± zbrajanje i jedno kad je oduzimanje.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 3\times 8}}{2\times 3}
Kvadrirajte -10.
x=\frac{-\left(-10\right)±\sqrt{100-12\times 8}}{2\times 3}
Pomnožite -4 i 3.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2\times 3}
Pomnožite -12 i 8.
x=\frac{-\left(-10\right)±\sqrt{4}}{2\times 3}
Dodaj 100 broju -96.
x=\frac{-\left(-10\right)±2}{2\times 3}
Izračunajte kvadratni korijen od 4.
x=\frac{10±2}{2\times 3}
Broj suprotan broju -10 jest 10.
x=\frac{10±2}{6}
Pomnožite 2 i 3.
x=\frac{12}{6}
Sada riješite jednadžbu x=\frac{10±2}{6} kad je ± plus. Dodaj 10 broju 2.
x=2
Podijelite 12 s 6.
x=\frac{8}{6}
Sada riješite jednadžbu x=\frac{10±2}{6} kad je ± minus. Oduzmite 2 od 10.
x=\frac{4}{3}
Skratite razlomak \frac{8}{6} na najmanje vrijednosti tako da izlučite i poništite 2.
3x^{2}-10x+8=3\left(x-2\right)\left(x-\frac{4}{3}\right)
Izvorni izraz rastavite na faktore pomoću jednadžbe ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite 2 s x_{1} i \frac{4}{3} s x_{2}.
3x^{2}-10x+8=3\left(x-2\right)\times \frac{3x-4}{3}
Oduzmite \frac{4}{3} od x traženjem zajedničkog nazivnika i oduzimanjem brojnika. Zatim pokratite razlomak ako je moguće.
3x^{2}-10x+8=\left(x-2\right)\left(3x-4\right)
Poništite najveći zajednički djelitelj 3 u vrijednostima 3 i 3.