Solve for x
\left\{\begin{matrix}x=\frac{x_{2}}{2}-\frac{x_{2}}{2z}-\frac{1}{2}\text{, }&z\neq 0\\x\in \mathrm{R}\text{, }&y=0\text{ or }\left(x_{2}=0\text{ and }z=0\right)\end{matrix}\right.
Solve for x_2
\left\{\begin{matrix}x_{2}=-\frac{z\left(2x+1\right)}{1-z}\text{, }&z\neq 1\\x_{2}\in \mathrm{R}\text{, }&y=0\text{ or }\left(x=-\frac{1}{2}\text{ and }z=1\right)\end{matrix}\right.
Share
Copied to clipboard
zy+2zyx+\left(1-z\right)x_{2}y=0y
Use the distributive property to multiply zy by 1+2x.
zy+2zyx+\left(x_{2}-zx_{2}\right)y=0y
Use the distributive property to multiply 1-z by x_{2}.
zy+2zyx+x_{2}y-zx_{2}y=0y
Use the distributive property to multiply x_{2}-zx_{2} by y.
zy+2zyx+x_{2}y-zx_{2}y=0
Anything times zero gives zero.
2zyx+x_{2}y-zx_{2}y=-zy
Subtract zy from both sides. Anything subtracted from zero gives its negation.
2zyx-zx_{2}y=-zy-x_{2}y
Subtract x_{2}y from both sides.
2zyx=-zy-x_{2}y+zx_{2}y
Add zx_{2}y to both sides.
2xyz=x_{2}yz-x_{2}y-yz
Reorder the terms.
2yzx=x_{2}yz-x_{2}y-yz
The equation is in standard form.
\frac{2yzx}{2yz}=\frac{y\left(x_{2}z-x_{2}-z\right)}{2yz}
Divide both sides by 2yz.
x=\frac{y\left(x_{2}z-x_{2}-z\right)}{2yz}
Dividing by 2yz undoes the multiplication by 2yz.
x=\frac{x_{2}}{2}-\frac{x_{2}}{2z}-\frac{1}{2}
Divide y\left(x_{2}z-x_{2}-z\right) by 2yz.
zy+2zyx+\left(1-z\right)x_{2}y=0y
Use the distributive property to multiply zy by 1+2x.
zy+2zyx+\left(x_{2}-zx_{2}\right)y=0y
Use the distributive property to multiply 1-z by x_{2}.
zy+2zyx+x_{2}y-zx_{2}y=0y
Use the distributive property to multiply x_{2}-zx_{2} by y.
zy+2zyx+x_{2}y-zx_{2}y=0
Anything times zero gives zero.
2zyx+x_{2}y-zx_{2}y=-zy
Subtract zy from both sides. Anything subtracted from zero gives its negation.
x_{2}y-zx_{2}y=-zy-2zyx
Subtract 2zyx from both sides.
-x_{2}yz+x_{2}y=-2xyz-yz
Reorder the terms.
\left(-yz+y\right)x_{2}=-2xyz-yz
Combine all terms containing x_{2}.
\left(y-yz\right)x_{2}=-2xyz-yz
The equation is in standard form.
\frac{\left(y-yz\right)x_{2}}{y-yz}=-\frac{yz\left(2x+1\right)}{y-yz}
Divide both sides by -yz+y.
x_{2}=-\frac{yz\left(2x+1\right)}{y-yz}
Dividing by -yz+y undoes the multiplication by -yz+y.
x_{2}=-\frac{z\left(2x+1\right)}{1-z}
Divide -zy\left(1+2x\right) by -yz+y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}