Type a math problem

AC

log

ln

(

)

7

8

9

τ

π

4

5

6

≤

≥

%

θ

1

2

3

<

>

x

i

0

.

y

This site uses cookies for analytics, personalized content and ads. By continuing to browse this site, you agree to this use. Learn more

Type a math problem

AC

log

ln

(

)

7

8

9

τ

π

4

5

6

≤

≥

%

θ

1

2

3

<

>

x

i

0

.

y

Solve for x

x=\frac{y-4}{3}

$x=3y−4 $

Steps for Solving Linear Equation

y = 3x + 4

$y=3x+4$

Swap sides so that all variable terms are on the left hand side.

Swap sides so that all variable terms are on the left hand side.

3x+4=y

$3x+4=y$

Subtract 4 from both sides.

Subtract $4$ from both sides.

3x=y-4

$3x=y−4$

Divide both sides by 3.

Divide both sides by $3$.

\frac{3x}{3}=\frac{y-4}{3}

$33x =3y−4 $

Dividing by 3 undoes the multiplication by 3.

Dividing by $3$ undoes the multiplication by $3$.

x=\frac{y-4}{3}

$x=3y−4 $

View solution steps

Solve for y

y=3x+4

$y=3x+4$

Assign y

y≔3x+4

$y:=3x+4$

Graph

Share

Copy

Copied to clipboard

3x+4=y

Swap sides so that all variable terms are on the left hand side.

3x=y-4

Subtract 4 from both sides.

\frac{3x}{3}=\frac{y-4}{3}

Divide both sides by 3.

x=\frac{y-4}{3}

Dividing by 3 undoes the multiplication by 3.

Examples

Quadratic equation

{ x } ^ { 2 } - 4 x - 5 = 0

$x_{2}−4x−5=0$

Trigonometry

4 \sin \theta \cos \theta = 2 \sin \theta

$4sinθcosθ=2sinθ$

Linear equation

y = 3x + 4

$y=3x+4$

Arithmetic

699 * 533

$699∗533$

Matrix

\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { - 1 } & { 1 } & { 5 } \end{array} \right]

$[25 34 ][2−1 01 35 ]$

Simultaneous equation

\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.

${8x+2y=467x+3y=47 $

Differentiation

\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }

$dxd (x−5)(3x_{2}−2) $

Integration

\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x

$∫_{0}xe_{−x_{2}}dx$

Limits

\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}

$x→−3lim x_{2}+2x−3x_{2}−9 $

Back to top