Solve for θ

\theta =2\pi n_{2}+\frac{\pi }{3}\text{, }n_{2}\in \mathrm{Z}

\theta =2\pi n_{3}+\frac{5\pi }{3}\text{, }n_{3}\in \mathrm{Z}

\theta =\pi n_{1}\text{, }n_{1}\in \mathrm{Z}

Graph

Copy

Copied to clipboard

Examples

Quadratic equation

{ x } ^ { 2 } - 4 x - 5 = 0

Trigonometry

4 \sin \theta \cos \theta = 2 \sin \theta

Linear equation

y = 3x + 4

Arithmetic

699 * 533

Matrix

\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]

Simultaneous equation

\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.

Differentiation

\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }

Integration

\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x

Limits

\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}