Type a math problem
keyboard
Submit
algebra
trigonometry
statistics
calculus
matrices
variables
list
AC
log
log nlog n
ln
(
)
7
8
9
backspacebackspace
absolute valueabsolute value
floorfloor
ceilingceiling
factorialfactorial
τ
π
4
5
6
÷÷
mixed fractionmixed fraction
fractionfraction
%
θ
1
2
3
multiplymultiply
<
>
powerpower
squaresquare
x
i
0
.
AddAdd
SubtractSubtract
leftleft
rightright
rootroot
square rootsquare root
y
InifinityInifinity
commacomma
equalsequals
enterenter
solvesolve
Evaluate
Steps Using Derivative Rule for Quotient
Immersive ReaderImmersive Reader
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is . The derivative of is .
Do the arithmetic.
Expand using distributive property.
To multiply powers of the same base, add their exponents.
Do the arithmetic.
Remove unnecessary parentheses.
Combine like terms.
Subtract from .
For any term , .
For any term except , .
View solution steps
Graph

Similar Problems from Web Search

More ItemsMore ItemsMore Items
\frac{\left(x^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}-2)-\left(3x^{2}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-5)}{\left(x^{1}-5\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(x^{1}-5\right)\times 2\times 3x^{\left(2-1\right)}-\left(3x^{2}-2\right)x^{\left(1-1\right)}}{\left(x^{1}-5\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{\left(n-1\right)}.
\frac{\left(x^{1}-5\right)\times 6x^{1}-\left(3x^{2}-2\right)x^{0}}{\left(x^{1}-5\right)^{2}}
Do the arithmetic.
\frac{x^{1}\times 6x^{1}-5\times 6x^{1}-\left(3x^{2}x^{0}-2x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Expand using distributive property.
\frac{6x^{\left(1+1\right)}-5\times 6x^{1}-\left(3x^{2}-2x^{0}\right)}{\left(x^{1}-5\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{6x^{2}-30x^{1}-\left(3x^{2}-2x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Do the arithmetic.
\frac{6x^{2}-30x^{1}-3x^{2}-\left(-2x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Remove unnecessary parentheses.
\frac{\left(6-3\right)x^{2}-30x^{1}-\left(-2x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Combine like terms.
\frac{3x^{2}-30x^{1}-\left(-2x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Subtract 3 from 6.
\frac{3x^{2}-30x-\left(-2x^{0}\right)}{\left(x-5\right)^{2}}
For any term t, t^{1}=t.
\frac{3x^{2}-30x-\left(-2\right)}{\left(x-5\right)^{2}}
For any term t except 0, t^{0}=1.
Back to topBack to top
Back to top