Solve for x
x=\frac{3}{2z+1}
z\neq -\frac{1}{2}
Solve for z
z=-\frac{1}{2}+\frac{3}{2x}
x\neq 0
Share
Copied to clipboard
2zx=3-x
Multiply both sides of the equation by 2.
2zx+x=3
Add x to both sides.
\left(2z+1\right)x=3
Combine all terms containing x.
\frac{\left(2z+1\right)x}{2z+1}=\frac{3}{2z+1}
Divide both sides by 2z+1.
x=\frac{3}{2z+1}
Dividing by 2z+1 undoes the multiplication by 2z+1.
2zx=3-x
Multiply both sides of the equation by 2.
2xz=3-x
The equation is in standard form.
\frac{2xz}{2x}=\frac{3-x}{2x}
Divide both sides by 2x.
z=\frac{3-x}{2x}
Dividing by 2x undoes the multiplication by 2x.
z=-\frac{1}{2}+\frac{3}{2x}
Divide 3-x by 2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}