Solve for x
\left\{\begin{matrix}x=\frac{z-y}{y+1}\text{, }&y\neq -1\\x\in \mathrm{R}\text{, }&z=-1\text{ and }y=-1\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{x-z}{x+1}\text{, }&x\neq -1\\y\in \mathrm{R}\text{, }&z=-1\text{ and }x=-1\end{matrix}\right.
Share
Copied to clipboard
z-1-x-xy=y-1
Subtract xy from both sides.
-1-x-xy=y-1-z
Subtract z from both sides.
-x-xy=y-1-z+1
Add 1 to both sides.
-x-xy=y-z
Add -1 and 1 to get 0.
\left(-1-y\right)x=y-z
Combine all terms containing x.
\left(-y-1\right)x=y-z
The equation is in standard form.
\frac{\left(-y-1\right)x}{-y-1}=\frac{y-z}{-y-1}
Divide both sides by -y-1.
x=\frac{y-z}{-y-1}
Dividing by -y-1 undoes the multiplication by -y-1.
x=-\frac{y-z}{y+1}
Divide y-z by -y-1.
y-1+xy=z-1-x
Swap sides so that all variable terms are on the left hand side.
y+xy=z-1-x+1
Add 1 to both sides.
y+xy=z-x
Add -1 and 1 to get 0.
\left(1+x\right)y=z-x
Combine all terms containing y.
\left(x+1\right)y=z-x
The equation is in standard form.
\frac{\left(x+1\right)y}{x+1}=\frac{z-x}{x+1}
Divide both sides by 1+x.
y=\frac{z-x}{x+1}
Dividing by 1+x undoes the multiplication by 1+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}