Solve for x
x=\frac{1-yz}{5y^{2}}
y\neq 0
Solve for y (complex solution)
\left\{\begin{matrix}y=\frac{\sqrt{20x+z^{2}}-z}{10x}\text{; }y=-\frac{\sqrt{20x+z^{2}}+z}{10x}\text{, }&x\neq 0\\y=\frac{1}{z}\text{, }&x=0\text{ and }z\neq 0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{\sqrt{20x+z^{2}}+z}{10x}\text{, }&\left(x\geq -\frac{z^{2}}{20}\text{ and }z>0\text{ and }z\geq 2\sqrt{-5x}\text{ and }x<0\right)\text{ or }\left(|z|\geq 2\sqrt{-5x}\text{ and }x\geq -\frac{z^{2}}{20}\text{ and }x<0\right)\text{ or }x>0\\y=\frac{\sqrt{20x+z^{2}}-z}{10x}\text{, }&\left(x\geq -\frac{z^{2}}{20}\text{ and }z<0\text{ and }z\leq -2\sqrt{-5x}\text{ and }x<0\right)\text{ or }\left(|z|\geq 2\sqrt{-5x}\text{ and }x\geq -\frac{z^{2}}{20}\text{ and }x<0\right)\text{ or }x>0\\y=\frac{1}{z}\text{, }&x=0\text{ and }z\neq 0\end{matrix}\right.
Share
Copied to clipboard
zy=1-5xyy
Multiply both sides of the equation by y.
zy=1-5xy^{2}
Multiply y and y to get y^{2}.
1-5xy^{2}=zy
Swap sides so that all variable terms are on the left hand side.
-5xy^{2}=zy-1
Subtract 1 from both sides.
\left(-5y^{2}\right)x=yz-1
The equation is in standard form.
\frac{\left(-5y^{2}\right)x}{-5y^{2}}=\frac{yz-1}{-5y^{2}}
Divide both sides by -5y^{2}.
x=\frac{yz-1}{-5y^{2}}
Dividing by -5y^{2} undoes the multiplication by -5y^{2}.
x=-\frac{yz-1}{5y^{2}}
Divide zy-1 by -5y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}