Solve for x
x=-\frac{yz+2}{2yz-3}
y=0\text{ or }z\neq \frac{3}{2y}
Solve for y
\left\{\begin{matrix}y=-\frac{2-3x}{z\left(2x+1\right)}\text{, }&x\neq -\frac{1}{2}\text{ and }z\neq 0\\y\in \mathrm{R}\text{, }&z=0\text{ and }x=\frac{2}{3}\end{matrix}\right.
Share
Copied to clipboard
zy\left(2x+1\right)=3x-2
Variable x cannot be equal to -\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2x+1.
2zyx+zy=3x-2
Use the distributive property to multiply zy by 2x+1.
2zyx+zy-3x=-2
Subtract 3x from both sides.
2zyx-3x=-2-zy
Subtract zy from both sides.
\left(2zy-3\right)x=-2-zy
Combine all terms containing x.
\left(2yz-3\right)x=-yz-2
The equation is in standard form.
\frac{\left(2yz-3\right)x}{2yz-3}=\frac{-yz-2}{2yz-3}
Divide both sides by 2yz-3.
x=\frac{-yz-2}{2yz-3}
Dividing by 2yz-3 undoes the multiplication by 2yz-3.
x=-\frac{yz+2}{2yz-3}
Divide -2-zy by 2yz-3.
x=-\frac{yz+2}{2yz-3}\text{, }x\neq -\frac{1}{2}
Variable x cannot be equal to -\frac{1}{2}.
zy\left(2x+1\right)=3x-2
Multiply both sides of the equation by 2x+1.
2zyx+zy=3x-2
Use the distributive property to multiply zy by 2x+1.
\left(2zx+z\right)y=3x-2
Combine all terms containing y.
\left(2xz+z\right)y=3x-2
The equation is in standard form.
\frac{\left(2xz+z\right)y}{2xz+z}=\frac{3x-2}{2xz+z}
Divide both sides by 2zx+z.
y=\frac{3x-2}{2xz+z}
Dividing by 2zx+z undoes the multiplication by 2zx+z.
y=\frac{3x-2}{z\left(2x+1\right)}
Divide 3x-2 by 2zx+z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}