Solve for z
z=-\frac{9t+4}{t^{2}}
t\neq 0
Solve for t (complex solution)
\left\{\begin{matrix}t=\frac{\sqrt{81-16z}-9}{2z}\text{; }t=-\frac{\sqrt{81-16z}+9}{2z}\text{, }&z\neq 0\\t=-\frac{4}{9}\approx -0.444444444\text{, }&z=0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=\frac{\sqrt{81-16z}-9}{2z}\text{; }t=-\frac{\sqrt{81-16z}+9}{2z}\text{, }&z\neq 0\text{ and }z\leq \frac{81}{16}\\t=-\frac{4}{9}\approx -0.444444444\text{, }&z=0\end{matrix}\right.
Share
Copied to clipboard
zt^{2}+4=-9t
Subtract 9t from both sides. Anything subtracted from zero gives its negation.
zt^{2}=-9t-4
Subtract 4 from both sides.
t^{2}z=-9t-4
The equation is in standard form.
\frac{t^{2}z}{t^{2}}=\frac{-9t-4}{t^{2}}
Divide both sides by t^{2}.
z=\frac{-9t-4}{t^{2}}
Dividing by t^{2} undoes the multiplication by t^{2}.
z=-\frac{9t+4}{t^{2}}
Divide -9t-4 by t^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}