Skip to main content
Solve for z_4
Tick mark Image
Assign z_4
Tick mark Image

Similar Problems from Web Search

Share

z_{4}=\frac{\left(2-4i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator of \frac{2-4i}{1+i} by the complex conjugate of the denominator, 1-i.
z_{4}=\frac{\left(2-4i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z_{4}=\frac{\left(2-4i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
z_{4}=\frac{2\times 1+2\left(-i\right)-4i-4\left(-1\right)i^{2}}{2}
Multiply complex numbers 2-4i and 1-i like you multiply binomials.
z_{4}=\frac{2\times 1+2\left(-i\right)-4i-4\left(-1\right)\left(-1\right)}{2}
By definition, i^{2} is -1.
z_{4}=\frac{2-2i-4i-4}{2}
Do the multiplications in 2\times 1+2\left(-i\right)-4i-4\left(-1\right)\left(-1\right).
z_{4}=\frac{2-4+\left(-2-4\right)i}{2}
Combine the real and imaginary parts in 2-2i-4i-4.
z_{4}=\frac{-2-6i}{2}
Do the additions in 2-4+\left(-2-4\right)i.
z_{4}=-1-3i
Divide -2-6i by 2 to get -1-3i.