Solve for z_1
z_{1} = \frac{9553}{53} = 180\frac{13}{53} \approx 180.245283019
Assign z_1
z_{1}≔\frac{9553}{53}
Share
Copied to clipboard
z_{1}=\frac{1}{1.06}\times 43.72+139
Subtract 137 from 138 to get 1.
z_{1}=\frac{100}{106}\times 43.72+139
Expand \frac{1}{1.06} by multiplying both numerator and the denominator by 100.
z_{1}=\frac{50}{53}\times 43.72+139
Reduce the fraction \frac{100}{106} to lowest terms by extracting and canceling out 2.
z_{1}=\frac{50}{53}\times \frac{1093}{25}+139
Convert decimal number 43.72 to fraction \frac{4372}{100}. Reduce the fraction \frac{4372}{100} to lowest terms by extracting and canceling out 4.
z_{1}=\frac{50\times 1093}{53\times 25}+139
Multiply \frac{50}{53} times \frac{1093}{25} by multiplying numerator times numerator and denominator times denominator.
z_{1}=\frac{54650}{1325}+139
Do the multiplications in the fraction \frac{50\times 1093}{53\times 25}.
z_{1}=\frac{2186}{53}+139
Reduce the fraction \frac{54650}{1325} to lowest terms by extracting and canceling out 25.
z_{1}=\frac{2186}{53}+\frac{7367}{53}
Convert 139 to fraction \frac{7367}{53}.
z_{1}=\frac{2186+7367}{53}
Since \frac{2186}{53} and \frac{7367}{53} have the same denominator, add them by adding their numerators.
z_{1}=\frac{9553}{53}
Add 2186 and 7367 to get 9553.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}