Solve for z
z=\left(\frac{1}{2}-\frac{1}{2}i\right)z_{1}+\left(\frac{1}{2}+\frac{5}{2}i\right)
Solve for z_1
z_{1}=\left(1+i\right)z+\left(2-3i\right)
Share
Copied to clipboard
\left(1+i\right)z+2-3i=z_{1}
Swap sides so that all variable terms are on the left hand side.
\left(1+i\right)z-3i=z_{1}-2
Subtract 2 from both sides.
\left(1+i\right)z=z_{1}-2+3i
Add 3i to both sides.
\left(1+i\right)z=z_{1}+\left(-2+3i\right)
The equation is in standard form.
\frac{\left(1+i\right)z}{1+i}=\frac{z_{1}+\left(-2+3i\right)}{1+i}
Divide both sides by 1+i.
z=\frac{z_{1}+\left(-2+3i\right)}{1+i}
Dividing by 1+i undoes the multiplication by 1+i.
z=\left(\frac{1}{2}-\frac{1}{2}i\right)z_{1}+\left(\frac{1}{2}+\frac{5}{2}i\right)
Divide z_{1}+\left(-2+3i\right) by 1+i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}