z ( 1 - z ^ { 2 } ) d x + z d y - ( x + y + x z ^ { 2 } ) d z = 0
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&z=0\text{ or }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\text{ or }z=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&z=0\text{ or }x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&d=0\text{ or }z=0\end{matrix}\right.
Share
Copied to clipboard
\left(z-z^{3}\right)dx+zdy-\left(x+y+xz^{2}\right)dz=0
Use the distributive property to multiply z by 1-z^{2}.
\left(zd-z^{3}d\right)x+zdy-\left(x+y+xz^{2}\right)dz=0
Use the distributive property to multiply z-z^{3} by d.
zdx-z^{3}dx+zdy-\left(x+y+xz^{2}\right)dz=0
Use the distributive property to multiply zd-z^{3}d by x.
zdx-z^{3}dx+zdy-\left(xd+yd+xz^{2}d\right)z=0
Use the distributive property to multiply x+y+xz^{2} by d.
zdx-z^{3}dx+zdy-\left(xdz+ydz+xdz^{3}\right)=0
Use the distributive property to multiply xd+yd+xz^{2}d by z.
zdx-z^{3}dx+zdy-xdz-ydz-xdz^{3}=0
To find the opposite of xdz+ydz+xdz^{3}, find the opposite of each term.
-z^{3}dx+zdy-ydz-xdz^{3}=0
Combine zdx and -xdz to get 0.
-z^{3}dx-xdz^{3}=0
Combine zdy and -ydz to get 0.
-2z^{3}dx=0
Combine -z^{3}dx and -xdz^{3} to get -2z^{3}dx.
\left(-2xz^{3}\right)d=0
The equation is in standard form.
d=0
Divide 0 by -2z^{3}x.
\left(z-z^{3}\right)dx+zdy-\left(x+y+xz^{2}\right)dz=0
Use the distributive property to multiply z by 1-z^{2}.
\left(zd-z^{3}d\right)x+zdy-\left(x+y+xz^{2}\right)dz=0
Use the distributive property to multiply z-z^{3} by d.
zdx-z^{3}dx+zdy-\left(x+y+xz^{2}\right)dz=0
Use the distributive property to multiply zd-z^{3}d by x.
zdx-z^{3}dx+zdy-\left(xd+yd+xz^{2}d\right)z=0
Use the distributive property to multiply x+y+xz^{2} by d.
zdx-z^{3}dx+zdy-\left(xdz+ydz+xdz^{3}\right)=0
Use the distributive property to multiply xd+yd+xz^{2}d by z.
zdx-z^{3}dx+zdy-xdz-ydz-xdz^{3}=0
To find the opposite of xdz+ydz+xdz^{3}, find the opposite of each term.
-z^{3}dx+zdy-ydz-xdz^{3}=0
Combine zdx and -xdz to get 0.
-z^{3}dx-xdz^{3}=0
Combine zdy and -ydz to get 0.
-2z^{3}dx=0
Combine -z^{3}dx and -xdz^{3} to get -2z^{3}dx.
\left(-2dz^{3}\right)x=0
The equation is in standard form.
x=0
Divide 0 by -2z^{3}d.
\left(z-z^{3}\right)dx+zdy-\left(x+y+xz^{2}\right)dz=0
Use the distributive property to multiply z by 1-z^{2}.
\left(zd-z^{3}d\right)x+zdy-\left(x+y+xz^{2}\right)dz=0
Use the distributive property to multiply z-z^{3} by d.
zdx-z^{3}dx+zdy-\left(x+y+xz^{2}\right)dz=0
Use the distributive property to multiply zd-z^{3}d by x.
zdx-z^{3}dx+zdy-\left(xd+yd+xz^{2}d\right)z=0
Use the distributive property to multiply x+y+xz^{2} by d.
zdx-z^{3}dx+zdy-\left(xdz+ydz+xdz^{3}\right)=0
Use the distributive property to multiply xd+yd+xz^{2}d by z.
zdx-z^{3}dx+zdy-xdz-ydz-xdz^{3}=0
To find the opposite of xdz+ydz+xdz^{3}, find the opposite of each term.
-z^{3}dx+zdy-ydz-xdz^{3}=0
Combine zdx and -xdz to get 0.
-z^{3}dx-xdz^{3}=0
Combine zdy and -ydz to get 0.
-2z^{3}dx=0
Combine -z^{3}dx and -xdz^{3} to get -2z^{3}dx.
\left(-2xz^{3}\right)d=0
The equation is in standard form.
d=0
Divide 0 by -2z^{3}x.
\left(z-z^{3}\right)dx+zdy-\left(x+y+xz^{2}\right)dz=0
Use the distributive property to multiply z by 1-z^{2}.
\left(zd-z^{3}d\right)x+zdy-\left(x+y+xz^{2}\right)dz=0
Use the distributive property to multiply z-z^{3} by d.
zdx-z^{3}dx+zdy-\left(x+y+xz^{2}\right)dz=0
Use the distributive property to multiply zd-z^{3}d by x.
zdx-z^{3}dx+zdy-\left(xd+yd+xz^{2}d\right)z=0
Use the distributive property to multiply x+y+xz^{2} by d.
zdx-z^{3}dx+zdy-\left(xdz+ydz+xdz^{3}\right)=0
Use the distributive property to multiply xd+yd+xz^{2}d by z.
zdx-z^{3}dx+zdy-xdz-ydz-xdz^{3}=0
To find the opposite of xdz+ydz+xdz^{3}, find the opposite of each term.
-z^{3}dx+zdy-ydz-xdz^{3}=0
Combine zdx and -xdz to get 0.
-z^{3}dx-xdz^{3}=0
Combine zdy and -ydz to get 0.
-2z^{3}dx=0
Combine -z^{3}dx and -xdz^{3} to get -2z^{3}dx.
\left(-2dz^{3}\right)x=0
The equation is in standard form.
x=0
Divide 0 by -2z^{3}d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}