Solve for x
x=-\frac{z+20-2\sqrt[3]{4}}{z-1}
z\neq 1
Solve for z
z=-\frac{-x+20-2\sqrt[3]{4}}{x+1}
x\neq -1
Share
Copied to clipboard
zx+z-\sqrt[3]{32}=x-20
Use the distributive property to multiply z by x+1.
zx+z-\sqrt[3]{32}-x=-20
Subtract x from both sides.
zx-\sqrt[3]{32}-x=-20-z
Subtract z from both sides.
zx-x=-20-z+\sqrt[3]{32}
Add \sqrt[3]{32} to both sides.
\left(z-1\right)x=-20-z+\sqrt[3]{32}
Combine all terms containing x.
\left(z-1\right)x=-z+\sqrt[3]{32}-20
The equation is in standard form.
\frac{\left(z-1\right)x}{z-1}=\frac{-z+2\times 2^{\frac{2}{3}}-20}{z-1}
Divide both sides by z-1.
x=\frac{-z+2\times 2^{\frac{2}{3}}-20}{z-1}
Dividing by z-1 undoes the multiplication by z-1.
zx+z-\sqrt[3]{32}=x-20
Use the distributive property to multiply z by x+1.
zx+z=x-20+\sqrt[3]{32}
Add \sqrt[3]{32} to both sides.
\left(x+1\right)z=x-20+\sqrt[3]{32}
Combine all terms containing z.
\left(x+1\right)z=x+\sqrt[3]{32}-20
The equation is in standard form.
\frac{\left(x+1\right)z}{x+1}=\frac{x+2\times 2^{\frac{2}{3}}-20}{x+1}
Divide both sides by x+1.
z=\frac{x+2\times 2^{\frac{2}{3}}-20}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}