Evaluate
-660\sqrt{10}z^{7}
Differentiate w.r.t. z
-4620\sqrt{10}z^{6}
Share
Copied to clipboard
z^{7}\times \frac{-1320}{\frac{20}{\sqrt{1000}}}
Multiply 11 and -120 to get -1320.
z^{7}\times \frac{-1320}{\frac{20}{10\sqrt{10}}}
Factor 1000=10^{2}\times 10. Rewrite the square root of the product \sqrt{10^{2}\times 10} as the product of square roots \sqrt{10^{2}}\sqrt{10}. Take the square root of 10^{2}.
z^{7}\times \frac{-1320}{\frac{20\sqrt{10}}{10\left(\sqrt{10}\right)^{2}}}
Rationalize the denominator of \frac{20}{10\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
z^{7}\times \frac{-1320}{\frac{20\sqrt{10}}{10\times 10}}
The square of \sqrt{10} is 10.
z^{7}\times \frac{-1320}{\frac{\sqrt{10}}{5}}
Cancel out 2\times 10 in both numerator and denominator.
z^{7}\times \frac{-1320\times 5}{\sqrt{10}}
Divide -1320 by \frac{\sqrt{10}}{5} by multiplying -1320 by the reciprocal of \frac{\sqrt{10}}{5}.
z^{7}\times \frac{-1320\times 5\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{-1320\times 5}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
z^{7}\times \frac{-1320\times 5\sqrt{10}}{10}
The square of \sqrt{10} is 10.
z^{7}\times \frac{-6600\sqrt{10}}{10}
Multiply -1320 and 5 to get -6600.
z^{7}\left(-660\right)\sqrt{10}
Divide -6600\sqrt{10} by 10 to get -660\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}