Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z^{4}+z^{2}-12=\left(z^{2}\right)^{2}+8z^{2}+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(z^{2}+4\right)^{2}.
z^{4}+z^{2}-12=z^{4}+8z^{2}+16
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
z^{4}+z^{2}-12-z^{4}=8z^{2}+16
Subtract z^{4} from both sides.
z^{2}-12=8z^{2}+16
Combine z^{4} and -z^{4} to get 0.
z^{2}-12-8z^{2}=16
Subtract 8z^{2} from both sides.
-7z^{2}-12=16
Combine z^{2} and -8z^{2} to get -7z^{2}.
-7z^{2}=16+12
Add 12 to both sides.
-7z^{2}=28
Add 16 and 12 to get 28.
z^{2}=\frac{28}{-7}
Divide both sides by -7.
z^{2}=-4
Divide 28 by -7 to get -4.
z=2i z=-2i
The equation is now solved.
z^{4}+z^{2}-12=\left(z^{2}\right)^{2}+8z^{2}+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(z^{2}+4\right)^{2}.
z^{4}+z^{2}-12=z^{4}+8z^{2}+16
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
z^{4}+z^{2}-12-z^{4}=8z^{2}+16
Subtract z^{4} from both sides.
z^{2}-12=8z^{2}+16
Combine z^{4} and -z^{4} to get 0.
z^{2}-12-8z^{2}=16
Subtract 8z^{2} from both sides.
-7z^{2}-12=16
Combine z^{2} and -8z^{2} to get -7z^{2}.
-7z^{2}-12-16=0
Subtract 16 from both sides.
-7z^{2}-28=0
Subtract 16 from -12 to get -28.
z=\frac{0±\sqrt{0^{2}-4\left(-7\right)\left(-28\right)}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 0 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\left(-7\right)\left(-28\right)}}{2\left(-7\right)}
Square 0.
z=\frac{0±\sqrt{28\left(-28\right)}}{2\left(-7\right)}
Multiply -4 times -7.
z=\frac{0±\sqrt{-784}}{2\left(-7\right)}
Multiply 28 times -28.
z=\frac{0±28i}{2\left(-7\right)}
Take the square root of -784.
z=\frac{0±28i}{-14}
Multiply 2 times -7.
z=-2i
Now solve the equation z=\frac{0±28i}{-14} when ± is plus.
z=2i
Now solve the equation z=\frac{0±28i}{-14} when ± is minus.
z=-2i z=2i
The equation is now solved.