Solve for x
x=\frac{yz^{2}-1}{z^{3}}
z\neq 0
Solve for y
y=xz+\frac{1}{z^{2}}
z\neq 0
Share
Copied to clipboard
z^{2}y-xz^{3}=1
Add 1 to both sides. Anything plus zero gives itself.
-xz^{3}=1-z^{2}y
Subtract z^{2}y from both sides.
\left(-z^{3}\right)x=1-yz^{2}
The equation is in standard form.
\frac{\left(-z^{3}\right)x}{-z^{3}}=\frac{1-yz^{2}}{-z^{3}}
Divide both sides by -z^{3}.
x=\frac{1-yz^{2}}{-z^{3}}
Dividing by -z^{3} undoes the multiplication by -z^{3}.
x=\frac{y}{z}-\frac{1}{z^{3}}
Divide 1-z^{2}y by -z^{3}.
z^{2}y-xz^{3}=1
Add 1 to both sides. Anything plus zero gives itself.
z^{2}y=1+xz^{3}
Add xz^{3} to both sides.
z^{2}y=xz^{3}+1
The equation is in standard form.
\frac{z^{2}y}{z^{2}}=\frac{xz^{3}+1}{z^{2}}
Divide both sides by z^{2}.
y=\frac{xz^{3}+1}{z^{2}}
Dividing by z^{2} undoes the multiplication by z^{2}.
y=xz+\frac{1}{z^{2}}
Divide 1+xz^{3} by z^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}