Solve for z
z=\frac{\sqrt{3}}{2}+\frac{1}{2}i\approx 0.866025404+0.5i
z=-\frac{\sqrt{3}}{2}+\frac{1}{2}i\approx -0.866025404+0.5i
Share
Copied to clipboard
z^{2}-iz-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{i±\sqrt{\left(-i\right)^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -i for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{i±\sqrt{-1-4\left(-1\right)}}{2}
Square -i.
z=\frac{i±\sqrt{-1+4}}{2}
Multiply -4 times -1.
z=\frac{i±\sqrt{3}}{2}
Add -1 to 4.
z=\frac{\sqrt{3}+i}{2}
Now solve the equation z=\frac{i±\sqrt{3}}{2} when ± is plus. Add i to \sqrt{3}.
z=\frac{\sqrt{3}}{2}+\frac{1}{2}i
Divide i+\sqrt{3} by 2.
z=\frac{-\sqrt{3}+i}{2}
Now solve the equation z=\frac{i±\sqrt{3}}{2} when ± is minus. Subtract \sqrt{3} from i.
z=-\frac{\sqrt{3}}{2}+\frac{1}{2}i
Divide i-\sqrt{3} by 2.
z=\frac{\sqrt{3}}{2}+\frac{1}{2}i z=-\frac{\sqrt{3}}{2}+\frac{1}{2}i
The equation is now solved.
z^{2}-iz-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
z^{2}-iz-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
z^{2}-iz=-\left(-1\right)
Subtracting -1 from itself leaves 0.
z^{2}-iz=1
Subtract -1 from 0.
z^{2}-iz+\left(-\frac{1}{2}i\right)^{2}=1+\left(-\frac{1}{2}i\right)^{2}
Divide -i, the coefficient of the x term, by 2 to get -\frac{1}{2}i. Then add the square of -\frac{1}{2}i to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-iz-\frac{1}{4}=1-\frac{1}{4}
Square -\frac{1}{2}i.
z^{2}-iz-\frac{1}{4}=\frac{3}{4}
Add 1 to -\frac{1}{4}.
\left(z-\frac{1}{2}i\right)^{2}=\frac{3}{4}
Factor z^{2}-iz-\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{1}{2}i\right)^{2}}=\sqrt{\frac{3}{4}}
Take the square root of both sides of the equation.
z-\frac{1}{2}i=\frac{\sqrt{3}}{2} z-\frac{1}{2}i=-\frac{\sqrt{3}}{2}
Simplify.
z=\frac{\sqrt{3}}{2}+\frac{1}{2}i z=-\frac{\sqrt{3}}{2}+\frac{1}{2}i
Add \frac{1}{2}i to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}