Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z^{2}-8z=0-2^{2}
Multiply 0 and 1 to get 0.
z^{2}-8z=0-4
Calculate 2 to the power of 2 and get 4.
z^{2}-8z=-4
Subtract 4 from 0 to get -4.
z^{2}-8z+4=0
Add 4 to both sides.
z=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-8\right)±\sqrt{64-4\times 4}}{2}
Square -8.
z=\frac{-\left(-8\right)±\sqrt{64-16}}{2}
Multiply -4 times 4.
z=\frac{-\left(-8\right)±\sqrt{48}}{2}
Add 64 to -16.
z=\frac{-\left(-8\right)±4\sqrt{3}}{2}
Take the square root of 48.
z=\frac{8±4\sqrt{3}}{2}
The opposite of -8 is 8.
z=\frac{4\sqrt{3}+8}{2}
Now solve the equation z=\frac{8±4\sqrt{3}}{2} when ± is plus. Add 8 to 4\sqrt{3}.
z=2\sqrt{3}+4
Divide 8+4\sqrt{3} by 2.
z=\frac{8-4\sqrt{3}}{2}
Now solve the equation z=\frac{8±4\sqrt{3}}{2} when ± is minus. Subtract 4\sqrt{3} from 8.
z=4-2\sqrt{3}
Divide 8-4\sqrt{3} by 2.
z=2\sqrt{3}+4 z=4-2\sqrt{3}
The equation is now solved.
z^{2}-8z=0-2^{2}
Multiply 0 and 1 to get 0.
z^{2}-8z=0-4
Calculate 2 to the power of 2 and get 4.
z^{2}-8z=-4
Subtract 4 from 0 to get -4.
z^{2}-8z+\left(-4\right)^{2}=-4+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-8z+16=-4+16
Square -4.
z^{2}-8z+16=12
Add -4 to 16.
\left(z-4\right)^{2}=12
Factor z^{2}-8z+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-4\right)^{2}}=\sqrt{12}
Take the square root of both sides of the equation.
z-4=2\sqrt{3} z-4=-2\sqrt{3}
Simplify.
z=2\sqrt{3}+4 z=4-2\sqrt{3}
Add 4 to both sides of the equation.