Solve for z
z = \frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
z^{2}-3z+\frac{9}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{9}{4}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and \frac{9}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{9}{4}}}{2}
Square -3.
z=\frac{-\left(-3\right)±\sqrt{9-9}}{2}
Multiply -4 times \frac{9}{4}.
z=\frac{-\left(-3\right)±\sqrt{0}}{2}
Add 9 to -9.
z=-\frac{-3}{2}
Take the square root of 0.
z=\frac{3}{2}
The opposite of -3 is 3.
z^{2}-3z+\frac{9}{4}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\left(z-\frac{3}{2}\right)^{2}=0
Factor z^{2}-3z+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{3}{2}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
z-\frac{3}{2}=0 z-\frac{3}{2}=0
Simplify.
z=\frac{3}{2} z=\frac{3}{2}
Add \frac{3}{2} to both sides of the equation.
z=\frac{3}{2}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}