Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z^{2}-3z+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-3\right)±\sqrt{9-4}}{2}
Square -3.
z=\frac{-\left(-3\right)±\sqrt{5}}{2}
Add 9 to -4.
z=\frac{3±\sqrt{5}}{2}
The opposite of -3 is 3.
z=\frac{\sqrt{5}+3}{2}
Now solve the equation z=\frac{3±\sqrt{5}}{2} when ± is plus. Add 3 to \sqrt{5}.
z=\frac{3-\sqrt{5}}{2}
Now solve the equation z=\frac{3±\sqrt{5}}{2} when ± is minus. Subtract \sqrt{5} from 3.
z=\frac{\sqrt{5}+3}{2} z=\frac{3-\sqrt{5}}{2}
The equation is now solved.
z^{2}-3z+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
z^{2}-3z+1-1=-1
Subtract 1 from both sides of the equation.
z^{2}-3z=-1
Subtracting 1 from itself leaves 0.
z^{2}-3z+\left(-\frac{3}{2}\right)^{2}=-1+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-3z+\frac{9}{4}=-1+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
z^{2}-3z+\frac{9}{4}=\frac{5}{4}
Add -1 to \frac{9}{4}.
\left(z-\frac{3}{2}\right)^{2}=\frac{5}{4}
Factor z^{2}-3z+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{3}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
z-\frac{3}{2}=\frac{\sqrt{5}}{2} z-\frac{3}{2}=-\frac{\sqrt{5}}{2}
Simplify.
z=\frac{\sqrt{5}+3}{2} z=\frac{3-\sqrt{5}}{2}
Add \frac{3}{2} to both sides of the equation.