Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z^{2}+\left(-2\sqrt{2}-2\right)z+2\sqrt{2}+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-\left(-2\sqrt{2}-2\right)±\sqrt{\left(-2\sqrt{2}-2\right)^{2}-4\left(2\sqrt{2}+4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2-2\sqrt{2} for b, and 2\sqrt{2}+4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-2\sqrt{2}-2\right)±\sqrt{8\sqrt{2}+12-4\left(2\sqrt{2}+4\right)}}{2}
Square -2-2\sqrt{2}.
z=\frac{-\left(-2\sqrt{2}-2\right)±\sqrt{8\sqrt{2}+12-8\sqrt{2}-16}}{2}
Multiply -4 times 2\sqrt{2}+4.
z=\frac{-\left(-2\sqrt{2}-2\right)±\sqrt{-4}}{2}
Add 12+8\sqrt{2} to -8\sqrt{2}-16.
z=\frac{-\left(-2\sqrt{2}-2\right)±2i}{2}
Take the square root of -4.
z=\frac{2\sqrt{2}+2±2i}{2}
The opposite of -2-2\sqrt{2} is 2+2\sqrt{2}.
z=\frac{2+2i+2\sqrt{2}}{2}
Now solve the equation z=\frac{2\sqrt{2}+2±2i}{2} when ± is plus. Add 2+2\sqrt{2} to 2i.
z=1+i+\sqrt{2}
Divide 2+2i+2\sqrt{2} by 2.
z=\frac{2-2i+2\sqrt{2}}{2}
Now solve the equation z=\frac{2\sqrt{2}+2±2i}{2} when ± is minus. Subtract 2i from 2+2\sqrt{2}.
z=1-i+\sqrt{2}
Divide 2-2i+2\sqrt{2} by 2.
z=1+i+\sqrt{2} z=1-i+\sqrt{2}
The equation is now solved.
z^{2}+\left(-2\sqrt{2}-2\right)z+2\sqrt{2}+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
z^{2}+\left(-2\sqrt{2}-2\right)z+2\sqrt{2}+4-\left(2\sqrt{2}+4\right)=-\left(2\sqrt{2}+4\right)
Subtract 2\sqrt{2}+4 from both sides of the equation.
z^{2}+\left(-2\sqrt{2}-2\right)z=-\left(2\sqrt{2}+4\right)
Subtracting 2\sqrt{2}+4 from itself leaves 0.
z^{2}+\left(-2\sqrt{2}-2\right)z=-2\sqrt{2}-4
Subtract 2\sqrt{2}+4 from 0.
z^{2}+\left(-2\sqrt{2}-2\right)z+\left(-\sqrt{2}-1\right)^{2}=-2\sqrt{2}-4+\left(-\sqrt{2}-1\right)^{2}
Divide -2-2\sqrt{2}, the coefficient of the x term, by 2 to get -1-\sqrt{2}. Then add the square of -1-\sqrt{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}+\left(-2\sqrt{2}-2\right)z+2\sqrt{2}+3=-2\sqrt{2}-4+2\sqrt{2}+3
Square -1-\sqrt{2}.
z^{2}+\left(-2\sqrt{2}-2\right)z+2\sqrt{2}+3=-1
Add -2\sqrt{2}-4 to 3+2\sqrt{2}.
\left(z-\sqrt{2}-1\right)^{2}=-1
Factor z^{2}+\left(-2\sqrt{2}-2\right)z+2\sqrt{2}+3. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\sqrt{2}-1\right)^{2}}=\sqrt{-1}
Take the square root of both sides of the equation.
z-\sqrt{2}-1=i z-\sqrt{2}-1=-i
Simplify.
z=1+i+\sqrt{2} z=1-i+\sqrt{2}
Subtract -1-\sqrt{2} from both sides of the equation.