Solve for z
z=1+2i
z=1-i
Share
Copied to clipboard
z^{2}+\left(-2-i\right)z+\left(3+i\right)=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{2+i±\sqrt{\left(-2-i\right)^{2}-4\left(3+i\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2-i for b, and 3+i for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{2+i±\sqrt{3+4i-4\left(3+i\right)}}{2}
Square -2-i.
z=\frac{2+i±\sqrt{3+4i+\left(-12-4i\right)}}{2}
Multiply -4 times 3+i.
z=\frac{2+i±\sqrt{-9}}{2}
Add 3+4i to -12-4i.
z=\frac{2+i±3i}{2}
Take the square root of -9.
z=\frac{2+4i}{2}
Now solve the equation z=\frac{2+i±3i}{2} when ± is plus. Add 2+i to 3i.
z=1+2i
Divide 2+4i by 2.
z=\frac{2-2i}{2}
Now solve the equation z=\frac{2+i±3i}{2} when ± is minus. Subtract 3i from 2+i.
z=1-i
Divide 2-2i by 2.
z=1+2i z=1-i
The equation is now solved.
z^{2}+\left(-2-i\right)z+\left(3+i\right)=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
z^{2}+\left(-2-i\right)z+\left(3+i\right)-\left(3+i\right)=-3-i
Subtract 3+i from both sides of the equation.
z^{2}+\left(-2-i\right)z=-3-i
Subtracting 3+i from itself leaves 0.
z^{2}+\left(-2-i\right)z+\left(-1-\frac{1}{2}i\right)^{2}=-3-i+\left(-1-\frac{1}{2}i\right)^{2}
Divide -2-i, the coefficient of the x term, by 2 to get -1-\frac{1}{2}i. Then add the square of -1-\frac{1}{2}i to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}+\left(-2-i\right)z+\left(\frac{3}{4}+i\right)=-3-i+\left(\frac{3}{4}+i\right)
Square -1-\frac{1}{2}i.
z^{2}+\left(-2-i\right)z+\left(\frac{3}{4}+i\right)=-\frac{9}{4}
Add -3-i to \frac{3}{4}+i.
\left(z+\left(-1-\frac{1}{2}i\right)\right)^{2}=-\frac{9}{4}
Factor z^{2}+\left(-2-i\right)z+\left(\frac{3}{4}+i\right). In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+\left(-1-\frac{1}{2}i\right)\right)^{2}}=\sqrt{-\frac{9}{4}}
Take the square root of both sides of the equation.
z+\left(-1-\frac{1}{2}i\right)=\frac{3}{2}i z+\left(-1-\frac{1}{2}i\right)=-\frac{3}{2}i
Simplify.
z=1+2i z=1-i
Add 1+\frac{1}{2}i to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}