Solve for z
z=10i
z=-2i
Share
Copied to clipboard
z^{2}-8iz=-20
Calculate 1-i to the power of 6 and get 8i.
z^{2}-8iz+20=0
Add 20 to both sides.
z=\frac{8i±\sqrt{\left(-8i\right)^{2}-4\times 20}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8i for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{8i±\sqrt{-64-4\times 20}}{2}
Square -8i.
z=\frac{8i±\sqrt{-64-80}}{2}
Multiply -4 times 20.
z=\frac{8i±\sqrt{-144}}{2}
Add -64 to -80.
z=\frac{8i±12i}{2}
Take the square root of -144.
z=\frac{20i}{2}
Now solve the equation z=\frac{8i±12i}{2} when ± is plus. Add 8i to 12i.
z=10i
Divide 20i by 2.
z=\frac{-4i}{2}
Now solve the equation z=\frac{8i±12i}{2} when ± is minus. Subtract 12i from 8i.
z=-2i
Divide -4i by 2.
z=10i z=-2i
The equation is now solved.
z^{2}-8iz=-20
Calculate 1-i to the power of 6 and get 8i.
z^{2}-8iz+\left(-4i\right)^{2}=-20+\left(-4i\right)^{2}
Divide -8i, the coefficient of the x term, by 2 to get -4i. Then add the square of -4i to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-8iz-16=-20-16
Square -4i.
z^{2}-8iz-16=-36
Add -20 to -16.
\left(z-4i\right)^{2}=-36
Factor z^{2}-8iz-16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-4i\right)^{2}}=\sqrt{-36}
Take the square root of both sides of the equation.
z-4i=6i z-4i=-6i
Simplify.
z=10i z=-2i
Add 4i to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}