Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z^{2}-8iz=-20
Calculate 1-i to the power of 6 and get 8i.
z^{2}-8iz+20=0
Add 20 to both sides.
z=\frac{8i±\sqrt{\left(-8i\right)^{2}-4\times 20}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8i for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{8i±\sqrt{-64-4\times 20}}{2}
Square -8i.
z=\frac{8i±\sqrt{-64-80}}{2}
Multiply -4 times 20.
z=\frac{8i±\sqrt{-144}}{2}
Add -64 to -80.
z=\frac{8i±12i}{2}
Take the square root of -144.
z=\frac{20i}{2}
Now solve the equation z=\frac{8i±12i}{2} when ± is plus. Add 8i to 12i.
z=10i
Divide 20i by 2.
z=\frac{-4i}{2}
Now solve the equation z=\frac{8i±12i}{2} when ± is minus. Subtract 12i from 8i.
z=-2i
Divide -4i by 2.
z=10i z=-2i
The equation is now solved.
z^{2}-8iz=-20
Calculate 1-i to the power of 6 and get 8i.
z^{2}-8iz+\left(-4i\right)^{2}=-20+\left(-4i\right)^{2}
Divide -8i, the coefficient of the x term, by 2 to get -4i. Then add the square of -4i to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-8iz-16=-20-16
Square -4i.
z^{2}-8iz-16=-36
Add -20 to -16.
\left(z-4i\right)^{2}=-36
Factor z^{2}-8iz-16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-4i\right)^{2}}=\sqrt{-36}
Take the square root of both sides of the equation.
z-4i=6i z-4i=-6i
Simplify.
z=10i z=-2i
Add 4i to both sides of the equation.