Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z^{2}-\frac{15}{16}=0
Add -\frac{3}{2} and \frac{9}{16} to get -\frac{15}{16}.
z^{2}=\frac{15}{16}
Add \frac{15}{16} to both sides. Anything plus zero gives itself.
z=\frac{\sqrt{15}}{4} z=-\frac{\sqrt{15}}{4}
Take the square root of both sides of the equation.
z^{2}-\frac{15}{16}=0
Add -\frac{3}{2} and \frac{9}{16} to get -\frac{15}{16}.
z=\frac{0±\sqrt{0^{2}-4\left(-\frac{15}{16}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{15}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\left(-\frac{15}{16}\right)}}{2}
Square 0.
z=\frac{0±\sqrt{\frac{15}{4}}}{2}
Multiply -4 times -\frac{15}{16}.
z=\frac{0±\frac{\sqrt{15}}{2}}{2}
Take the square root of \frac{15}{4}.
z=\frac{\sqrt{15}}{4}
Now solve the equation z=\frac{0±\frac{\sqrt{15}}{2}}{2} when ± is plus.
z=-\frac{\sqrt{15}}{4}
Now solve the equation z=\frac{0±\frac{\sqrt{15}}{2}}{2} when ± is minus.
z=\frac{\sqrt{15}}{4} z=-\frac{\sqrt{15}}{4}
The equation is now solved.