Solve for z
z=\frac{1}{2}=0.5
z=-\frac{1}{2}=-0.5
Share
Copied to clipboard
4z^{2}-1=0
Multiply both sides by 4.
\left(2z-1\right)\left(2z+1\right)=0
Consider 4z^{2}-1. Rewrite 4z^{2}-1 as \left(2z\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
z=\frac{1}{2} z=-\frac{1}{2}
To find equation solutions, solve 2z-1=0 and 2z+1=0.
z^{2}=\frac{1}{4}
Add \frac{1}{4} to both sides. Anything plus zero gives itself.
z=\frac{1}{2} z=-\frac{1}{2}
Take the square root of both sides of the equation.
z^{2}-\frac{1}{4}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
z=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\left(-\frac{1}{4}\right)}}{2}
Square 0.
z=\frac{0±\sqrt{1}}{2}
Multiply -4 times -\frac{1}{4}.
z=\frac{0±1}{2}
Take the square root of 1.
z=\frac{1}{2}
Now solve the equation z=\frac{0±1}{2} when ± is plus. Divide 1 by 2.
z=-\frac{1}{2}
Now solve the equation z=\frac{0±1}{2} when ± is minus. Divide -1 by 2.
z=\frac{1}{2} z=-\frac{1}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}