Skip to main content
Solve for k
Tick mark Image
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

z^{2}\left(1-\frac{\lambda }{2a}\right)\times 2a=k\times 2a
Multiply both sides of the equation by 2a.
z^{2}\left(\frac{2a}{2a}-\frac{\lambda }{2a}\right)\times 2a=k\times 2a
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2a}{2a}.
z^{2}\times \frac{2a-\lambda }{2a}\times 2a=k\times 2a
Since \frac{2a}{2a} and \frac{\lambda }{2a} have the same denominator, subtract them by subtracting their numerators.
\frac{z^{2}\left(2a-\lambda \right)}{2a}\times 2a=k\times 2a
Express z^{2}\times \frac{2a-\lambda }{2a} as a single fraction.
\frac{z^{2}\left(2a-\lambda \right)\times 2}{2a}a=k\times 2a
Express \frac{z^{2}\left(2a-\lambda \right)}{2a}\times 2 as a single fraction.
\frac{\left(-\lambda +2a\right)z^{2}}{a}a=k\times 2a
Cancel out 2 in both numerator and denominator.
\frac{\left(-\lambda +2a\right)z^{2}a}{a}=k\times 2a
Express \frac{\left(-\lambda +2a\right)z^{2}}{a}a as a single fraction.
\left(-\lambda +2a\right)z^{2}=k\times 2a
Cancel out a in both numerator and denominator.
-\lambda z^{2}+2az^{2}=k\times 2a
Use the distributive property to multiply -\lambda +2a by z^{2}.
k\times 2a=-\lambda z^{2}+2az^{2}
Swap sides so that all variable terms are on the left hand side.
2ak=2az^{2}-\lambda z^{2}
The equation is in standard form.
\frac{2ak}{2a}=\frac{\left(2a-\lambda \right)z^{2}}{2a}
Divide both sides by 2a.
k=\frac{\left(2a-\lambda \right)z^{2}}{2a}
Dividing by 2a undoes the multiplication by 2a.
k=-\frac{\lambda z^{2}}{2a}+z^{2}
Divide \left(2a-\lambda \right)z^{2} by 2a.