Solve for k
k=-\frac{\lambda z^{2}}{2a}+z^{2}
a\neq 0
Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{\lambda z^{2}}{2\left(k-z^{2}\right)}\text{, }&z\neq 0\text{ and }\lambda \neq 0\text{ and }z\neq -\sqrt{k}\text{ and }z\neq \sqrt{k}\text{ and }k\neq z^{2}\\a\neq 0\text{, }&\left(k=0\text{ and }z=0\right)\text{ or }\left(z\neq 0\text{ and }k=z^{2}\text{ and }\lambda =0\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{\lambda z^{2}}{2\left(k-z^{2}\right)}\text{, }&z\neq 0\text{ and }\lambda \neq 0\text{ and }\left(|z|\neq \sqrt{k}\text{ or }k<0\right)\text{ and }k\neq z^{2}\\a\neq 0\text{, }&\left(k=0\text{ and }z=0\right)\text{ or }\left(z\neq 0\text{ and }k=z^{2}\text{ and }\lambda =0\right)\end{matrix}\right.
Share
Copied to clipboard
z^{2}\left(1-\frac{\lambda }{2a}\right)\times 2a=k\times 2a
Multiply both sides of the equation by 2a.
z^{2}\left(\frac{2a}{2a}-\frac{\lambda }{2a}\right)\times 2a=k\times 2a
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2a}{2a}.
z^{2}\times \frac{2a-\lambda }{2a}\times 2a=k\times 2a
Since \frac{2a}{2a} and \frac{\lambda }{2a} have the same denominator, subtract them by subtracting their numerators.
\frac{z^{2}\left(2a-\lambda \right)}{2a}\times 2a=k\times 2a
Express z^{2}\times \frac{2a-\lambda }{2a} as a single fraction.
\frac{z^{2}\left(2a-\lambda \right)\times 2}{2a}a=k\times 2a
Express \frac{z^{2}\left(2a-\lambda \right)}{2a}\times 2 as a single fraction.
\frac{\left(-\lambda +2a\right)z^{2}}{a}a=k\times 2a
Cancel out 2 in both numerator and denominator.
\frac{\left(-\lambda +2a\right)z^{2}a}{a}=k\times 2a
Express \frac{\left(-\lambda +2a\right)z^{2}}{a}a as a single fraction.
\left(-\lambda +2a\right)z^{2}=k\times 2a
Cancel out a in both numerator and denominator.
-\lambda z^{2}+2az^{2}=k\times 2a
Use the distributive property to multiply -\lambda +2a by z^{2}.
k\times 2a=-\lambda z^{2}+2az^{2}
Swap sides so that all variable terms are on the left hand side.
2ak=2az^{2}-\lambda z^{2}
The equation is in standard form.
\frac{2ak}{2a}=\frac{\left(2a-\lambda \right)z^{2}}{2a}
Divide both sides by 2a.
k=\frac{\left(2a-\lambda \right)z^{2}}{2a}
Dividing by 2a undoes the multiplication by 2a.
k=-\frac{\lambda z^{2}}{2a}+z^{2}
Divide \left(2a-\lambda \right)z^{2} by 2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}