Factor
\left(z-4\right)\left(z+8\right)
Evaluate
\left(z-4\right)\left(z+8\right)
Share
Copied to clipboard
z^{2}+4z-32
Multiply and combine like terms.
a+b=4 ab=1\left(-32\right)=-32
Factor the expression by grouping. First, the expression needs to be rewritten as z^{2}+az+bz-32. To find a and b, set up a system to be solved.
-1,32 -2,16 -4,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -32.
-1+32=31 -2+16=14 -4+8=4
Calculate the sum for each pair.
a=-4 b=8
The solution is the pair that gives sum 4.
\left(z^{2}-4z\right)+\left(8z-32\right)
Rewrite z^{2}+4z-32 as \left(z^{2}-4z\right)+\left(8z-32\right).
z\left(z-4\right)+8\left(z-4\right)
Factor out z in the first and 8 in the second group.
\left(z-4\right)\left(z+8\right)
Factor out common term z-4 by using distributive property.
z^{2}+4z-32
Combine 8z and -4z to get 4z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}