Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z^{2}+3z-30=2z^{2}+17z+30
Use the distributive property to multiply 2z+5 by z+6 and combine like terms.
z^{2}+3z-30-2z^{2}=17z+30
Subtract 2z^{2} from both sides.
-z^{2}+3z-30=17z+30
Combine z^{2} and -2z^{2} to get -z^{2}.
-z^{2}+3z-30-17z=30
Subtract 17z from both sides.
-z^{2}-14z-30=30
Combine 3z and -17z to get -14z.
-z^{2}-14z-30-30=0
Subtract 30 from both sides.
-z^{2}-14z-60=0
Subtract 30 from -30 to get -60.
z=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\left(-1\right)\left(-60\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -14 for b, and -60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-14\right)±\sqrt{196-4\left(-1\right)\left(-60\right)}}{2\left(-1\right)}
Square -14.
z=\frac{-\left(-14\right)±\sqrt{196+4\left(-60\right)}}{2\left(-1\right)}
Multiply -4 times -1.
z=\frac{-\left(-14\right)±\sqrt{196-240}}{2\left(-1\right)}
Multiply 4 times -60.
z=\frac{-\left(-14\right)±\sqrt{-44}}{2\left(-1\right)}
Add 196 to -240.
z=\frac{-\left(-14\right)±2\sqrt{11}i}{2\left(-1\right)}
Take the square root of -44.
z=\frac{14±2\sqrt{11}i}{2\left(-1\right)}
The opposite of -14 is 14.
z=\frac{14±2\sqrt{11}i}{-2}
Multiply 2 times -1.
z=\frac{14+2\sqrt{11}i}{-2}
Now solve the equation z=\frac{14±2\sqrt{11}i}{-2} when ± is plus. Add 14 to 2i\sqrt{11}.
z=-\sqrt{11}i-7
Divide 14+2i\sqrt{11} by -2.
z=\frac{-2\sqrt{11}i+14}{-2}
Now solve the equation z=\frac{14±2\sqrt{11}i}{-2} when ± is minus. Subtract 2i\sqrt{11} from 14.
z=-7+\sqrt{11}i
Divide 14-2i\sqrt{11} by -2.
z=-\sqrt{11}i-7 z=-7+\sqrt{11}i
The equation is now solved.
z^{2}+3z-30=2z^{2}+17z+30
Use the distributive property to multiply 2z+5 by z+6 and combine like terms.
z^{2}+3z-30-2z^{2}=17z+30
Subtract 2z^{2} from both sides.
-z^{2}+3z-30=17z+30
Combine z^{2} and -2z^{2} to get -z^{2}.
-z^{2}+3z-30-17z=30
Subtract 17z from both sides.
-z^{2}-14z-30=30
Combine 3z and -17z to get -14z.
-z^{2}-14z=30+30
Add 30 to both sides.
-z^{2}-14z=60
Add 30 and 30 to get 60.
\frac{-z^{2}-14z}{-1}=\frac{60}{-1}
Divide both sides by -1.
z^{2}+\left(-\frac{14}{-1}\right)z=\frac{60}{-1}
Dividing by -1 undoes the multiplication by -1.
z^{2}+14z=\frac{60}{-1}
Divide -14 by -1.
z^{2}+14z=-60
Divide 60 by -1.
z^{2}+14z+7^{2}=-60+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}+14z+49=-60+49
Square 7.
z^{2}+14z+49=-11
Add -60 to 49.
\left(z+7\right)^{2}=-11
Factor z^{2}+14z+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+7\right)^{2}}=\sqrt{-11}
Take the square root of both sides of the equation.
z+7=\sqrt{11}i z+7=-\sqrt{11}i
Simplify.
z=-7+\sqrt{11}i z=-\sqrt{11}i-7
Subtract 7 from both sides of the equation.