Solve for y (complex solution)
\left\{\begin{matrix}y=\frac{z}{\cos(2x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{4}\\y\in \mathrm{C}\text{, }&z=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{4}\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=\frac{z}{\cos(2x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{4}\\y\in \mathrm{R}\text{, }&z=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{4}\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\pi n_{1}-\frac{i\ln(\frac{-\sqrt{z^{2}-y^{2}}+z}{y})}{2}\text{, }n_{1}\in \mathrm{Z}\text{; }x=\pi n_{2}-\frac{i\ln(\frac{\sqrt{z^{2}-y^{2}}+z}{y})}{2}\text{, }n_{2}\in \mathrm{Z}\text{, }&y\neq 0\\x\in \mathrm{C}\text{, }&z=0\text{ and }y=0\end{matrix}\right.
Share
Copied to clipboard
y\cos(2x)=z
Swap sides so that all variable terms are on the left hand side.
\cos(2x)y=z
The equation is in standard form.
\frac{\cos(2x)y}{\cos(2x)}=\frac{z}{\cos(2x)}
Divide both sides by \cos(2x).
y=\frac{z}{\cos(2x)}
Dividing by \cos(2x) undoes the multiplication by \cos(2x).
y\cos(2x)=z
Swap sides so that all variable terms are on the left hand side.
\cos(2x)y=z
The equation is in standard form.
\frac{\cos(2x)y}{\cos(2x)}=\frac{z}{\cos(2x)}
Divide both sides by \cos(2x).
y=\frac{z}{\cos(2x)}
Dividing by \cos(2x) undoes the multiplication by \cos(2x).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}