Solve for x
\left\{\begin{matrix}x=-\frac{e^{y}-z-zy^{2}}{y\left(y^{2}+1\right)}\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&z=1\text{ and }y=0\end{matrix}\right.
Share
Copied to clipboard
z\left(y^{2}+1\right)=xy\left(y^{2}+1\right)+e^{y}
Multiply both sides of the equation by y^{2}+1.
zy^{2}+z=xy\left(y^{2}+1\right)+e^{y}
Use the distributive property to multiply z by y^{2}+1.
zy^{2}+z=xy^{3}+xy+e^{y}
Use the distributive property to multiply xy by y^{2}+1.
xy^{3}+xy+e^{y}=zy^{2}+z
Swap sides so that all variable terms are on the left hand side.
xy^{3}+xy=zy^{2}+z-e^{y}
Subtract e^{y} from both sides.
\left(y^{3}+y\right)x=zy^{2}+z-e^{y}
Combine all terms containing x.
\frac{\left(y^{3}+y\right)x}{y^{3}+y}=\frac{zy^{2}+z-e^{y}}{y^{3}+y}
Divide both sides by y^{3}+y.
x=\frac{zy^{2}+z-e^{y}}{y^{3}+y}
Dividing by y^{3}+y undoes the multiplication by y^{3}+y.
x=\frac{zy^{2}+z-e^{y}}{y\left(y^{2}+1\right)}
Divide zy^{2}+z-e^{y} by y^{3}+y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}